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Abstract  The optimizat ion of traffic flow on roads and highways of modern industrialized countries is key to their 
economic growth and success. Besides, the reduction of traffic congestions and jams is also desirable from an ecological 
point of view as it  yields a contribution to climate protection. In  this art icle, we stick to  a microscopic traffic simulation model 
and interpret the task of traffic flow optimizat ion as a mult i-agent learn ing problem. In so doing, we attach simple, adaptive 
agents to each of the vehicles and make them learn, using a distributed variant of model-free reinforcement learning, a 
cooperative driving behavior that is jointly optimal and aims at the prevention of traffic jams. Our approach is evaluated in a 
series of simulation experiments that emphasize that the substitution of selfish human behavior in traffic by the learned 
driving policies of the agents can result in substantial improvements in the quality of traffic flow. 
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1. Introduction 
The amount of traffic has been growing continuously in 

the recent decades, and it is expected to increase even 
further in the future[1]. Since there is only limited space for 
new roads, a key factor to managing the growing volume of 
traffic is to use the existing infrastructure more efficiently. 
Meanwhile the computing power onboard indiv idual 
vehicles has grown considerably recently and, therefore, is 
likely to facilitate an increased degree of autonomy in car 
control and, hence, a more efficient use of roads. 

Envisioning future car control systems, we might see the 
advent of vehicles that are controlled by fully autonomous 
agents such that the human can just lean back and enjoy the 
journey. In  the scope of this work, we disregard the 
technical challenges of car control such as reliable vision 
and scene interpretation, track control, or the integration of 
sensing and acting (see[2] for a corresponding learning 
approach) and instead adopt a rather abstract, multi-agent 
point of view. While our focus is still on indiv idual 
autonomous agents residing in the vehicles, we focus on 
these agents' goals of implementing a suitable high-level car 
control requiring the interaction with other traffic 
participants. 

We start by providing a review on contemporary methods 
for t raffic flow simulat ion (Section 2). In  so doing, we  
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identify one microscopic traffic simulation model which  is 
particularly suitable for our purposes as it reliably 
reproduces human behavior in traffic, including the sudden 
emergence of jams in dense traffic. Moreover, its 
microscopic character is beneficial, when intending to adopt 
a mult i-agent perspective on traffic control. Th is is exact ly 
what we do in  Section 3. We attach simple, but adaptive 
agents to all vehicles involved in the simulation  and make 
them learn  a driving behavior that is jointly cooperative and 
aims at both, the prevention of traffic jams and the 
maximization of traffic flow. In  order to achieve this the 
learning agents employ a distributed variant of model-free 
reinforcement  learning. Moreover, we provide a formal 
grounding for our learning approach by embedding it into 
the framework of decentralized Markov decision processes. 
Finally, we devote Section 4 to an empirical evaluation that 
investigates to which extent the adaptive agents succeed in 
improving their driving behavior and the quality of traffic. 

2. Traffic Flow Simulation 
Modeling traffic flow is an active field of research. From 

an abstract point of view, existing traffic flow models can 
be classified with respect to the resolution of the dynamics 
they are modeling. On the one hand, macroscopic models 
are based on physical models and describe the traffic flow 
by equations for averaged quantities like vehicle density, 
average velocity, or traffic flow. By contrast, microscopic 
models address the problem by modeling individual vehicle 
dynamics. They describe the traffic flow based on the 
characteristics and behavior of single traffic units (driver 



68 Thomas Gabel et al.:  The Cooperative Driver: Multi-Agent Learning for Preventing Traffic Jams 
 

 

and vehicle) and model, e.g., how individual vehicles 
follow one another or how lane changes are accomplished. 
There is also a third form of traffic models, mesoscopic 
models, where the individual behavior of a vehicle and 
driver, respectively, are described by mean field quantities, 
such as the mean vehicle density of a region in which a 
vehicle currently moves. 

In the article at hand, we advocate a multi-agent learning 
approach to traffic flow control. Accordingly, our focus is 
on microscopic traffic flow models because these 
correspond most naturally to a multi-agent view on traffic 
control.  

Therefore, we start by providing some basics about 
microscopic traffic flow models and about one particular 
instance of these models, before we present our learning 
approach. 

2.1. Microscopic Car-Following  

Microscopic traffic models describe the dynamics of 
individual vehicles as a function of the distances and 
velocities of neighboring vehicles. In this art icle, we 
consider single-lane traffic only, where the dynamics of 
interaction boil down to car-fo llowing. Extending our work 
towards more sophisticated models with multiple lanes and 
passing maneuvers are topics of future work. 

All car-following models start from the quite obvious 
observation that a change in velocity is only desired, if a 
vehicle's current velocity 𝑣𝑣  does not coincide with the 
corresponding driver's desired velocity 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 . The latter may  
be subject to physical limits, safety considerations, as well 
as legal regulations. Most of the classical car-following 
models can be traced back to the rather simple idea that a 
driver aims at reaching a desired velocity by using 

𝜕𝜕𝜕𝜕(𝑡𝑡 )
𝜕𝜕𝜕𝜕

= 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 −𝑣𝑣
𝜏𝜏

                 (1) 
to modify the current velocity with strongly varying 
interpretations and values of 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑  and 𝜏𝜏[3,4,5]. What is 
common to these classical models is that they determine 
vehicle velocit ies by solving differential equations.  

Another approach, called coupled map or cellu lar 
automata modeling, follows the idea to calculate vehicle 
velocities in discrete time steps, taking the situation in the 
preceding step into account to determine the velocities in 
the successor state[6,7]. Th is modeling approach features 
the advantage of being computationally efficient. Moreover, 
it is attractive from an agent-based perspective as it centers 
the focus on the individual vehicle or some kind of agent 
residing in  it, enabling it to explicitly  and autonomously act 
within the environment. 

The probably most important representative of this class 
of models is the Nagel-Schreckenberg model[8] which 
decomposes the road into segments of fixed length, allows 
each cell to be empty or occupied, and represents the 
velocity by an integer that indicates the number of cells a 
vehicle passes in a single time step. The model also 
incorporates stochasticity to account for imperfection in 
modeling driver behavior and, most importantly, very  well 

simulates real t raffic conditions including situations of 
traffic congestion. 

2.2. The Krauss Model  

In what follows, we focus on an extension of the 
Nagel-Schreckenberg model which has been suggested[9] 
to reliably describe the behavior of humans in real traffic 
and, in particular, to describe jamming. This so-called 
Krauss model is a microscopic traffic flow model that is 
based on a small set of general and simple assumptions 
regarding traffic. Despite its simplicity it  captures many 
properties of human behavior and real-world traffic 
clustering and jams. For example, it is capable of reflecting 
the fact that jams arise under “pure” conditions (i.e . not just 
due to obstacles) and that the transition from free flow to a 
jam occurs as a phase transition. 

The Krauss model utilizes a discrete t ime, but continuous 
space modeling of traffic. The basic assumption of the 
Krauss model is that there exist rather general properties of 
traffic flow which govern the behavior of the drivers. Thus, 
the macroscopic properties of traffic that can be observed 
are not pre-determined by the specific behavior of an 
individual traffic participant, but by general behavior 
patterns. 

Krauss distinguished between two different types of 
vehicle motion: free or interactionless motion and motion of 
a vehicle while interacting with another vehicle. Both of 
them are constrained by certain assumptions. The former 
one is restricted by the maximum speed of the vehicle, i.e. 
𝑣𝑣 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 , while at  the same time it is assumed that a driver 
desires to move as fast as possible. Thus, in free flow, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  
is the desired velocity 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑  of a  driver. 

Concerning motion while interacting with other vehicles,  
any driver's primary incentive is to avoid a collision with 

a preceding vehicle. To  this end, Krauss makes the central 
assumption that any motion is free of collisions. As a 
consequence, drivers are constrained to always limit their 
velocity to a value 𝑣𝑣𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎  that guarantees breaking to a full 
stop while not colliding with the preceding vehicle, i.e . it 
always holds 𝑣𝑣 ≤ 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 . The determination of 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
contains all the informat ion about how vehicles interact 
with one another. 

A final assumption the Krauss model makes concerns the 
physical properties of the vehicles. The values of the 
maximal accelerat ion 𝑎𝑎 and the breaking acceleration 𝑏𝑏 
of vehicles are bounded, i.e. −𝑏𝑏 ≤ 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ≤ 𝑎𝑎  with  
𝑎𝑎, 𝑏𝑏 > 0. 

Traffic simulat ion in  the Krauss model takes place in  
discrete time steps ∆𝑡𝑡, while space variables are continuous. 
This gives rise to the following inequation that holds true 
for the velocity of each vehicle: 

𝑣𝑣(𝑡𝑡 + ∆𝑡𝑡) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑣𝑣(𝑡𝑡) + 𝑎𝑎∆𝑡𝑡, 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 )   (2) 
where 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is determined with respect to the maximum 
breaking constraint 

𝑣𝑣(𝑡𝑡 + ∆𝑡𝑡) ≥ 𝑣𝑣(𝑡𝑡) − 𝑏𝑏∆𝑡𝑡.          (3) 
Given these ingredients, Krauss formulates his traffic 

flow model as follows: In each time step, every driver 
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selects the highest velocity that is compatible with the 
constraints and limits mentioned so far. This boils down to 
the following four update rules that are to be applied for 
every vehicle in every time step: 
• Safety Considerations (collision-free movements): 

𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡) = 𝑣𝑣𝑝𝑝 (𝑡𝑡) + 𝑔𝑔(𝑡𝑡)−𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑 (𝑡𝑡 )
𝜏𝜏𝑏𝑏+𝜏𝜏

      (4) 

• Desired Velocity (fastest possible movement): 
𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 (𝑡𝑡) = min�𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑣𝑣(𝑡𝑡) + 𝑎𝑎∆𝑡𝑡, 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �  (5) 

• Random Perturbation (lingering): 
𝑣𝑣(𝑡𝑡 + ∆𝑡𝑡) = max(0, 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 (𝑡𝑡) − 𝜂𝜂)      (6) 

• Actual Movement in Space: 
𝑥𝑥(𝑡𝑡 + Δ𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝑣𝑣Δ(𝑡𝑡)         (7) 

where 𝑣𝑣𝑝𝑝  corresponds to the velocity of the predecessor, 
i.e. to the leader vehicle, and 𝑔𝑔 is the gap between the car 
considered and its predecessor. The desired gap 𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑  takes 
safety considerations into account and, with 𝜏𝜏 denoting the 
drivers' reaction time, the Krauss model sets  

𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜏𝜏𝑣𝑣𝑝𝑝 . 
Furthermore, 𝜏𝜏𝑏𝑏  denotes the time required to come to a 

full stop which Krauss approximates by  
𝜏𝜏𝑏𝑏 = 𝑣𝑣�

𝑏𝑏
=

𝑣𝑣(𝑡𝑡)+𝑣𝑣𝑝𝑝(𝑡𝑡 )

2𝑏𝑏
              (8) 

Accordingly, the concrete formula for the safe velocity 
takes the form  

𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡) = 𝑣𝑣𝑝𝑝 (𝑡𝑡) +
𝑔𝑔(𝑡𝑡)−𝜏𝜏𝑣𝑣𝑝𝑝 (𝑡𝑡)
𝑣𝑣(𝑡𝑡)+𝑣𝑣𝑝𝑝(𝑡𝑡)

2𝑏𝑏 +𝜏𝜏
         (9) 

Finally, the Krauss model follows the Gipps family[6] of 
traffic flow models by assuming that a time step Δ𝑡𝑡 is equal 
to the reaction time 𝜏𝜏  with a typical setting of 𝜏𝜏 = 1 . 
Therefore, the length of a vehicle is not its true physical 
length, but the space that it covers in  a dense jam, i.e. a 
slightly larger quantity. Putting these settings together, the 
formula for 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  becomes 

𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡) = 𝑣𝑣𝑝𝑝 (𝑡𝑡) +
𝑔𝑔(𝑡𝑡)−𝜏𝜏𝑣𝑣𝑝𝑝 (𝑡𝑡)

𝑣𝑣�
𝑏𝑏+𝜏𝜏

  

               = 𝑣𝑣𝑝𝑝 (𝑡𝑡) +
𝑔𝑔(𝑡𝑡)−𝑣𝑣𝑝𝑝(𝑡𝑡)
𝑣𝑣(𝑡𝑡)+𝑣𝑣𝑝𝑝 (𝑡𝑡)

2𝑏𝑏 +1
              (10) 

Equation 6 models the human factor in  driv ing. It reflects 
the fact that during car-following indiv idual drivers may 
linger, i.e. they deviate from the desire of driving at a 
maximal or safe velocity in a random manner, for example 
because they are distracted or too cautious. In this 
perturbation step, each car is slowed down by a random 
amount 𝜂𝜂 which is uniformly d istributed over the interval 
[0, 𝜀𝜀], where 𝜀𝜀 ∈ [0,1] is the noise parameter of the model. 

2.3. The Occurrence of Jams  

The Krauss model is based on a set of four update 
equations and has four free parameters: the maximal 
velocity (though maximal velocity has a clear macroscopic 
mean ing and is, thus, typically not considered a “free” 
parameter), 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 , the maximal acceleration 𝑎𝑎 , the 
maximal deceleration 𝑏𝑏 , and the noise (or lingering) 
parameter 𝜀𝜀. 

The relation of the exact values of 𝑎𝑎 and 𝑏𝑏  plays a 
crucial role as to whether a traffic flow simulation based on 
the Krauss model exh ib its realistic properties, i.e. whether it 

successfully models real traffic, or not. To this end, three 
fundamentally d ifferent cases are distinguished[9] which 
result in qualitatively different types of behavior:  
• the high acceleration limit with 𝑎𝑎 → 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ,  
• the high deceleration limit with 𝑏𝑏 → ∞, and  
• the low acceleration, low decelerat ion setting with 

𝑎𝑎 ≪ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑏𝑏 ≪ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 .  
However, only  model instances of the third type exh ibit  

macroscopically realistic behavior and, hence, describe real 
traffic in a qualitat ively accurate way. For example, only in 
this setting jams feature a stable outflow and they arise “out 
of nothing”, i.e . the phase transition-like occurrence of jams 
is present.  

In essence, the Krauss model is capable of simulat ing 
real-world traffic well, if the accelerat ion and deceleration 
are limited to  values that correspond to realistic vehicle 
dynamics. Clearly, we stick to such a setting in the 
remainder o f this article. 

In order to realize a realistic model of jamming two  basic 
ingredients must be given[9]. On the one hand, vehicles 
must be able to slow down to a velocity slower than that of 
the leading car. On the other hand, the outflow from traffic 
congestions must be lower than the maximum flow. In the 
traffic flow model under consideration both of these 
characteristics are implemented by the noise term (cf. 𝜂𝜂 in  
Equation (6)) which is subject to the noise parameter 𝜀𝜀. 

Let  us consider the first of these two features in  more 
detail. The noise term implements overreactions that 
destabilize dense traffic. Drivers slow down their velocity 
to a value lower than necessary. This can lead to the 
emergence of a jam, where the probability for this to 
happen increases with the density of the traffic.  

Krauss points out that for any value of the noise 
parameter there is a value of the traffic's density, where the 
traffic typically breaks down due to the drivers' 
overreactions modeled by 𝜂𝜂. This breakdown comes along 
with a reduction of the average flow of traffic  – which is the 
average number of vehicles passing a fixed section within  a 
given time interval – and can be characterized by the 
difference of the homogeneous flow and the flow in a 
jammed state. While this difference vanishes for small noise 
values, it grows to a substantial amount as 𝜀𝜀 becomes larger 
than 0.5. In other words, for a fixed traffic density and 
small values of 𝜀𝜀  (and, in part icular, for the noise-free 
setting 𝜀𝜀 = 0) the entire t raffic flow is deterministic and the 
model degenerates to a simulation that remains 
unchangeably in a state of constant flow. Consequently, to 
allow for a meaningful simulat ion and to allow for a 
realistic occurrence and analysis of jams, the noise 
parameter must be set to reasonably large values. 

2.4. Motivation for a Multi-Agent Approach 

So far, we have summarized the foundations of the 
Krauss model. Th is microscopic traffic flow model is ab le 
to accomplish a realistic traffic simulation, including traffic 
congestions, as it appropriately  models how humans behave 



70 Thomas Gabel et al.:  The Cooperative Driver: Multi-Agent Learning for Preventing Traffic Jams 
 

 

in real-world t raffic. In  essence, humans aim at moving as 
fast as possible, but also tend to linger from t ime to t ime. 

In the following, we suggest to replace the human drivers 
in this microscopic simulation by intelligent autonomous 
agents that are capable of learn ing to behave in a 
cooperative manner. By cooperative we mean a behavior 
that reduces the costs for the entire set of traffic part icipants, 
where the interpretation of costs may take d ifferent fo rms. 
For example, it may be desired to maximize the average 
velocity of all vehicles, to limit  or ban the occurrence of 
jams, or to reduce the jo int emission of fumes. These 
optimization goals are, in  general, not achieved with human 
drivers due to the selfish behavior of humans captured in 
the Krauss model. To the best of the authors' knowledge 
this approach is novel. 

A microscopic traffic flow model like the Krauss model 
represents a good starting point for our research for two 
main reasons. First, the concept of individually acting 
agents can be easily implemented due to the microscopic 
character of the model. Second, Krauss-based simulations 
model very well human and real-world traffic. As a 
consequence, we might expect that a  machine learning 
approach using a massive set of independently learning 
agents might overcome certain limitations and 
disadvantages of the macroscopic traffic patterns that are 
arising due to suboptimal human behavior in traffic.  

In order to allow for a fair comparison, it  is also our goal 
to facilitate the applicat ion of an agent's learned behavior 
without extensive requirements regarding inter-vehicle 
communicat ion. This means the car controlling agents must 
base their decisions on the same amount of in formation as 
human drivers do. 

3. Traffic Simulation as Decentralized 
MDP 

We have pointed out that selfish and not farsighted 
human behavior can y ield severe disturbances to dense 
traffic. In what follows, we propose a multi-agent 
reinforcement learn ing approach in which we attach a single 
learning agent to each vehicle and aim at making the 
collective of all agents learn a behavior that is jo intly 
cooperative and superior to human car control in the Krauss 
model. 

3.1. Foundations  

For a formal characterization of the learning problem, we 
embed the problem settings of our interest into the 
framework of decentralized Markov decision processes 
(DEC-MDP) by Bernstein et al.[10]. 

Definition 1. A factored 𝑚𝑚 -agent DEC-MDP  𝑀𝑀  is 
defined by a tuple 

[𝐴𝐴𝐴𝐴, 𝑆𝑆, 𝐴𝐴, 𝑃𝑃, 𝑅𝑅, Ω, 𝑂𝑂] 
with  
• 𝐴𝐴𝐴𝐴 = {1, … ,𝑚𝑚} as the set of agents, 

• 𝑆𝑆 as the set of world states which can be factored into 
𝑚𝑚 components 𝑆𝑆 = 𝑆𝑆1 × … × 𝑆𝑆𝑚𝑚  (the 𝑆𝑆𝑖𝑖  belong to one of 
the agents each) 
• and 𝐴𝐴 = 𝐴𝐴1 × … × 𝐴𝐴𝑚𝑚  as the set of joint actions to be 

performed by the agents (𝑎𝑎 = (𝑎𝑎1, … , 𝑎𝑎𝑚𝑚 ) ∈ 𝐴𝐴 denotes a 
joint action that is made up of elementary actions 𝑎𝑎𝑖𝑖  taken 
by agent 𝑖𝑖). 
• 𝑃𝑃 is the transition function with 𝑃𝑃(𝑠𝑠′ |𝑠𝑠, 𝑎𝑎) denoting 

the probability that the system arrives at state 𝑠𝑠′  upon 
executing 𝑎𝑎 in 𝑠𝑠 and 
• 𝑅𝑅 is the reward function with 𝑅𝑅(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′ ) denoting the 

reward for executing 𝑎𝑎 in 𝑠𝑠 and transitioning to 𝑠𝑠′. 
• 𝛺𝛺 = 𝛺𝛺1 × … × 𝛺𝛺𝑚𝑚  represents the set of all 

observations of all agents (𝑜𝑜 = (𝑜𝑜1, … ,𝑜𝑜𝑚𝑚 ) ∈ 𝛺𝛺 denotes a 
joint observation with 𝑜𝑜𝑖𝑖  as the observation for agent 𝑖𝑖) 
and 
• 𝑂𝑂  is the observation function that determines the 

probability 𝑂𝑂(𝑜𝑜1, … , 𝑜𝑜𝑚𝑚 |𝑠𝑠, 𝑎𝑎, 𝑠𝑠′ ) that agent 1 through 𝑚𝑚 
perceive observations 𝑜𝑜1  through 𝑜𝑜𝑚𝑚  upon the execution 
of 𝑎𝑎 in 𝑠𝑠 and entering 𝑠𝑠′. 
• 𝑀𝑀 s jo intly fully observable, i.e. the current state is 

fully determined by the amalgamat ion of all agents' 
observations: 𝑂𝑂(𝑜𝑜�𝑠𝑠, 𝑎𝑎, 𝑠𝑠 ′) > 0 → Pr(𝑠𝑠 ′�𝑜𝑜) = 1. 

To the agent-specific components 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖 , 𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴𝑖𝑖 , 
𝑜𝑜𝑖𝑖 ∈ 𝑂𝑂𝑖𝑖  we refer as local state, local action, and local 
observation of agent 𝑖𝑖, respectively. 

A joint policy  𝜋𝜋 is a set of local policies [𝜋𝜋1, … , 𝜋𝜋𝑚𝑚 ] 
each of which is, in the general case, a mapping from agent 
𝑖𝑖 's sequence of local observations to local actions, i.e . 
𝜋𝜋𝑖𝑖: Ω�𝑖𝑖 → 𝐴𝐴𝑖𝑖 . In a memory less, reactive setting, local policies 
are defined over the most recent observation only, i.e. 
𝜋𝜋𝑖𝑖: Ω𝑖𝑖 → 𝐴𝐴𝑖𝑖 . 

A practically relevant case, however, is when each agent 
can fully observe its local state. 

Definition 2. A factored 𝑚𝑚-agent DEC-MDP has local 
full observability, if for all agents 𝑖𝑖 and for all local 
observations 𝑜𝑜𝑖𝑖  there is a local state 𝑠𝑠𝑖𝑖  such that 
Pr(𝑠𝑠𝑖𝑖|𝑜𝑜𝑖𝑖 ) = 1. 

It is important to note that joint full observability together 
with  local full observability of a decentralized MDP do 
generally not imply full observability. Instead, vast parts of 
the global state are hidden from each of the agents[11]. 

We also need to characterize the problems of our interest 
with respect to the inter-agent dependencies in their reward, 
transition, and observation functions. A factored 𝑚𝑚-agent 
DEC-MDP is called  reward independent, if there exist local 
functions 𝑅𝑅1  through 𝑅𝑅𝑚𝑚 , each depending on local states 
and actions of the agents only, as well as a function 𝑟𝑟 that 
amalgamates the global reward value from the local ones, 
such that maximizing each 𝑅𝑅𝑖𝑖  individually also yields a 
maximization of 𝑟𝑟. 

If, in a factored 𝑚𝑚-agent DEC-MDP, the observation 
each agent sees depends only on its current and next  local 
state and on its action, then the corresponding DEC-MDP is 
called observation independent, i.e. 
𝑃𝑃(𝑜𝑜𝑖𝑖 |𝑠𝑠, 𝑎𝑎, 𝑠𝑠′ , (𝑜𝑜1, … , 𝑜𝑜𝑖𝑖 −1,𝑜𝑜𝑖𝑖 +1,… , 𝑜𝑜𝑚𝑚 )  =  𝑃𝑃(𝑜𝑜𝑖𝑖 |𝑠𝑠𝑖𝑖 , 𝑎𝑎𝑖𝑖 , 𝑠𝑠′ 𝑖𝑖). 

Then, in combination with local full observability, the 
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observation-related components Ω  and 𝑂𝑂  are redundant 
and can be removed from Defin ition 2. 

The DEC-MDPs we consider subsequently are 
observation and reward independent, but they are not 
transition independent. Hence, the state transition 
probabilit ies of one agent are in general also influenced by 
other agents. However, in what follows, we assume that 
there are certain regularities in the dependencies between 
the agents. In particular, the local action of agent 𝑖𝑖 affects 
its own local state as well as the local state of exactly one 
other (always the same) agent 𝑗𝑗. This gives rise to the 
following definit ion. 

Definition 3. A factored 𝑚𝑚 -agent DEC-MDP has 
circular t ransition dependencies, if the local state of agent 𝑖𝑖 
is influenced by the local act ion of itself as well as by the 
local act ion of agent 𝑖𝑖 + 1 for all 𝑖𝑖 ∈ {1,… 𝑚𝑚 − 1} and by 
the local action of agent 1 for 𝑖𝑖 = 𝑚𝑚. 

3.2. Problem Modeling 

Obviously, this definit ion has been chosen in regard to 
the traffic simulation in the Krauss model where b inary 
interactions between vehicles are captured. To  be exact, 
traffic flow optimization problems can be modelled  using 
factored 𝑚𝑚-agent DEC-MDPs with circular dependencies 
because: 
• The state of the road, i.e. the global world state is 

factored where each vehicle observes only a small fraction 
of it. We attach to each vehicle an agent 𝑖𝑖 whose local 
state can be described by the observations that individual 
vehicles get hold of in the Krauss model. 
• State transitions are non-deterministic for a noise level 

𝜀𝜀 > 0; the system model is not known by the agents. 
• The local state 𝑠𝑠𝑖𝑖  is fully described by its velocity, the 

velocity of its preceding vehicle as well as the gap between 
the two. These are the variables necessary in the Krauss 
model to calculate the current value of the safe velocity 
𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (cf. Equation 10). The combination of all local states 
fully identifies the global system state, i.e. the problem is a 
DEC-MDP, and not a DEC-POMDP. 
The local state space of each agent 𝑖𝑖  is a  real-valued 
three-dimensional vector, i.e. 𝑆𝑆 = [0, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ] × [0, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ] ×
[0, 𝑑𝑑] ⊂ ℝ3  with 

𝑠𝑠𝑖𝑖(𝑡𝑡) = (𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖+1(𝑡𝑡) ,𝑥𝑥𝑖𝑖+1(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡))𝑇𝑇      (11) 
• Interactions between agents are strongly limited. The 

local state of any vehicle can be affected only by its own 
actions and by the actions of the directly preceding vehicle. 
This is reflected by the constraint of circular transition 
dependencies (𝑖𝑖 ← 𝑖𝑖 + 1) specified in Defin ition 3. 
• Given a fixed traffic density 𝜚𝜚 = 𝑚𝑚/𝑑𝑑  (with 𝑑𝑑 

denoting the length of the track considered and 𝑚𝑚  the 
number of vehicles), the traffic flow is defined as 

𝑞𝑞 = (𝑣̅𝑣𝑚𝑚)/𝑑𝑑 
with 𝑣̅𝑣  indicat ing the average velocity of all vehicles. 
Rewriting this equation, we see that it holds 𝑞𝑞 = 𝜚𝜚𝑣̅𝑣, which 
hints to the fact that the global traffic flow is proportional to 
the average velocity 𝑣̅𝑣 = (1/𝑚𝑚) ∑ 𝑣𝑣𝑖𝑖𝑚𝑚

𝑖𝑖=1  of the vehicles, 
given a fixed traffic density, i.e . a constant number of 𝑚𝑚 

vehicles on the track. As a consequence, the corresponding 
DEC-MDP can be constructed to be reward-independent, if 
we associate the differences between the velocit ies of 
individual vehicles in their next and current time step with 
the local reward functions 𝑅𝑅1  through 𝑅𝑅𝑚𝑚 , i.e. 𝑅𝑅𝑖𝑖 =
(𝑠𝑠𝑖𝑖 ,𝑎𝑎𝑖𝑖 , 𝑠𝑠′ 𝑖𝑖) = 𝑣𝑣𝑖𝑖(𝑠𝑠′ ) − 𝑣𝑣𝑖𝑖(𝑠𝑠)  and use 𝑟𝑟(𝑅𝑅1, … , 𝑅𝑅𝑚𝑚 ) =
(1/𝑚𝑚) ∑ 𝑅𝑅𝑖𝑖𝑚𝑚

𝑖𝑖=1  as amalgamation function (cf. Definit ion 1). 
All vehicles are independent of one another. They do not 

communicate with one another and choose their driving 
behavior independently. In the Krauss model each driver 
increments selfishly the desired velocity 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 , until 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
or 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  are reached. In order to allow for cooperative 
behavior, each agent must be enabled to willingly decide to 
not increase its current velocity as much as it possibly could, 
considering the current traffic situation. 

To this end, we facilitate each agent with the degree of 
freedom to select its desired velocity 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑  according to  

𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 (𝑡𝑡) = min�𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑣𝑣(𝑡𝑡) + 𝜆𝜆(𝑡𝑡)𝑎𝑎Δ𝑡𝑡, 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡)� (12) 
Here, the value of 𝜆𝜆(𝑡𝑡) ∈ [0,1] determines the share of 

the acceleration capabilit ies that the agent uses in the 
current time step. Thus, the choice for a concrete value of 𝜆𝜆 
must be done in each time step and, accordingly, 
corresponds to the current action of the agent considered. 
Based on this we define the agents' local po licies as follows. 

Definition 4. Given a factored 𝑚𝑚-agent DEC-MDP with  
circular transition dependencies, a local reactive policy of 
agent 𝑖𝑖 is defined as a mapping 𝜋𝜋𝑖𝑖: 𝑆𝑆𝑖𝑖 → 𝐴𝐴𝑖𝑖  where 𝐴𝐴𝑖𝑖  is a 
fin ite subset of [0,1] and 𝜆𝜆(𝑡𝑡) ≔ 𝜋𝜋𝑖𝑖(𝑠𝑠𝑖𝑖) (for 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑖𝑖(𝑡𝑡) ) 
is used in update Equation 12. 

In the remainder of this art icle, we set 𝐴𝐴𝑖𝑖 = {0,1} for all 
𝑖𝑖, which means that at any time step each agent can choose 
between a full acceleration as determined by Equation 5 and 
a steady motion, i.e. not to alter its current velocity. Note, 
however, that the velocity of an agent is still subject to the 
noise term (cf. Equation 7) and may, thus, be decreased 
randomly. More fine-grained or even continuous action sets 
might be employed, too, and would allow for an even 
higher degree of velocity control by the agent. This is 
subject of future work. 

3.3. Massive Multi-Agent Learning  

Solving a DEC-MDP optimally is NEXP-hard and thus 
intractable for all except the smallest problem sizes[12]. 
However, it is not our goal to find the optimal joint policy, 
but to come up with a policy of high quality in reasonable 
time. Speaking about the quality of a policy, the term 
quality translates to a policy that yields high traffic flow 
while avoiding traffic jams. We let the agents acquire their 
local policies jo intly with the other agents by repeated 
interaction with the DEC-MDP and concurrent evolvement 
of the policies. Since the state transition and reward model 
of the problem are not known to the agents we employ 
model-free reinforcement learning[13]. 

The agents use the well-known Q learning algorithm to 
update a local value function 𝑄𝑄𝑖𝑖:𝑆𝑆𝑖𝑖 × 𝐴𝐴𝑖𝑖 → ℝ  according to 

𝑄𝑄𝑖𝑖(𝑠𝑠𝑖𝑖 , 𝑎𝑎𝑖𝑖 ) ← (1 − 𝛼𝛼)𝑄𝑄(𝑠𝑠𝑖𝑖 , 𝑎𝑎𝑖𝑖 ) 
+(𝑟𝑟(𝑠𝑠𝑖𝑖 , 𝑎𝑎𝑖𝑖 , 𝑠𝑠𝑖𝑖′ ) +   𝛾𝛾 max𝑏𝑏 ∈𝐴𝐴𝑖𝑖 𝑄𝑄𝑖𝑖(𝑠𝑠𝑖𝑖

′ , 𝑏𝑏))      (13) 
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after having experienced a single local state transition 
(𝑠𝑠𝑖𝑖 ,𝑎𝑎𝑖𝑖 , 𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖′ )[14]. The learn ing rate is denoted by 𝛼𝛼, the 
discount factor by 𝛾𝛾. For the case of fin ite state and action 
spaces where the Q function can be represented using a 
look-up table, there are convergence guarantees that say Q 
learning converges to the optimal state-action value 
function with probability one, assuming that all state-action 
pairs are visited infinitely  often and that the learning rate 𝛼𝛼 
dimin ishes appropriately. From a given state-action value 
function 𝑄𝑄𝑖𝑖  a greedy policy can be derived according to  

𝜋𝜋𝑖𝑖(𝑠𝑠𝑖𝑖) = argmax𝑏𝑏 ∈𝐴𝐴𝑖𝑖 𝑄𝑄𝑖𝑖(𝑠𝑠𝑖𝑖 , 𝑏𝑏).     (14) 
As the state space 𝑆𝑆𝑖𝑖  to be considered by the agents is 

continuous, we employ a straightforward regular grid in 
order to discretize 𝑆𝑆𝑖𝑖 . To this end, we decompose the first 
state variable (relat ing to the vehicle's velocity) into 41 
different values, the second one (preceding vehicle's 
velocity) into 21  values, and the third one (the gap 
between the two) into 21 values, giving rise to an abstract 
state space made up of |𝑆𝑆� 𝑖𝑖| = 18081 abstract states. 

For the time being, we grant all agents access to the same 
𝑄𝑄𝑖𝑖  table, i.e. to the same data structure. This approach 
allows for a t remendous speed-up of the learn ing process as 
the experience tuples and belonging Q updates according to 
Equation 13 work on the same function 𝑄𝑄𝑖𝑖 . Note that this, 
in princip le, could enable the agents to get access to the 
other agents' 𝑄𝑄𝑖𝑖  (because 𝑄𝑄𝑖𝑖 = 𝑄𝑄𝑗𝑗  for all 𝑗𝑗) function and, 
thus, to their local policies 𝜋𝜋𝑖𝑖 . However, this knowledge is 
not exp loited during the learning process at all, i.e. our 
learning agents do not use 𝑄𝑄𝑖𝑖  to draw conclusions 
regarding the other vehicles' behavior. In other words, we 
utilize a shared local state-action value function 𝑄𝑄𝑖𝑖  only 
for reasons of computational efficiency. 

In this regard, one might object that the coupling of all 
agents' local state-action value functions contradicts the 
idea of entirely independent and decoupled learners. 
Nevertheless, this approach is meaningful and of high 
practical relevance for several reasons: First, the agents still 
must act under extreme restrict ions with respect to the 
global system state – they know only about the local traffic 
situation 𝑠𝑠𝑖𝑖  at their current location and they know nothing 
about the local state of other agents. Second, they do not 
know which actions were taken by the other agents (in fact, 
we disallow the agents to draw corresponding conclusions), 
and, as a matter of fact, even if they knew, this would be of 
litt le use because they are clueless about the local states 
other agents are in. Third, when thinking about a real-world 
implementation of a reinforcement learn ing approach for 
traffic flow optimizat ion, it is standing to reason that the 
participating vehicles collect and transmit their transition 
data to a centralized entity (e.g. the manufacturer of certain 
vehicles or even a public traffic control institution), which 
distributes learned (and fixed) 𝑄𝑄𝑖𝑖  functions to all agents 
and lets the agents derive their local po licies from th is local 
state-action value function independently. 

4. Empirical Evaluation 

We start our investigations by examin ing under which 
circumstances the Krauss model yields a realistic simulation 
of human behavior and, thus, results in the emergence of 
jams out of nowhere in dense traffic. After having analyzed 
the specific conditions of the simulation model, we apply 
and evaluate the learning approach presented in the 
preceding chapter. 

4.1. The Occurrence of Jams Revisited 
We use a circu lar track of 𝑑𝑑 = 200 units in length that 

is populated with 𝑚𝑚 = 100  vehicles, where we start the 
simulation with all vehicles distributed equidistantly over 
the track with no initial velocity. Thus, for all 𝑖𝑖 ∈
{1, … ,100}  we have a gap 𝑔𝑔𝑖𝑖 (0) = 2.0  and in itial 
velocities 𝑣𝑣𝑖𝑖(0) = 𝑣𝑣𝑖𝑖+1(0) = 0. Furthermore, we employ 
the settings of the acceleration and deceleration that Krauss 
identified to belong to the class of the “low accelerat ion, 
low deceleration” limit simulations (𝑎𝑎 = 0.2 , 𝑏𝑏 = 0.6 , 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 5 ) which, in general, yield the most realistic  
simulation. 

For ease of notion, we subsequently refer to the average 
velocity 𝑣̅𝑣 of all vehicles, when speaking about traffic flow 
𝑞𝑞 , because these two variables are proportional to one 
another ( 𝑞𝑞 = 𝑣̅𝑣𝑚𝑚/𝑑𝑑 ). Speaking about realistic traffic, 
however, we have to clearly define what we consider to be a 
jamming state. Homogeneous flow –  being the opposite of a 
jam – is characterized by all vehicles moving at constant 
speed under equidistant distribution over the track with a 
gap 𝑔𝑔ℎ𝑜𝑜𝑜𝑜 = 𝑑𝑑/𝑚𝑚 . Clearly, this state (for which  it  holds 
𝑣̅𝑣ℎ𝑜𝑜𝑜𝑜 = 𝑔𝑔ℎ𝑜𝑜𝑜𝑜 /Δ𝑡𝑡 = 2) can only  be attained in  a noise free 
setting. In the remainder of this article, we say that a jam is 
present on the track, if 
• the traffic congestion results in a substantial reduction 

of the velocity of the cars involved, i.e. their velocity is 
below 𝜇𝜇𝑣̅𝑣ℎ𝑜𝑜𝑜𝑜  (we set 𝜇𝜇 = 0.2), 
• the traffic congestion results in a crowding of vehicles, 

i.e. the gaps between the vehicles involved is below 𝜈𝜈𝑔𝑔ℎ𝑜𝑜𝑜𝑜  
(we set 𝜈𝜈 = 0.2), and 
• the traffic congestion is large enough, i.e. concerns at 

least 𝜅𝜅𝜅𝜅  vehicles (we set 𝜅𝜅 = 0.1). 

In Figure 1 we analyze the impact of the single remain ing 
free parameter of the Krauss model (cf. Section 3.2), the 
noise or lingering parameter 𝜀𝜀. The top chart shows for 
which noise levels jams emerge at all. Obviously for values 
of 𝜀𝜀 = 0.5 and below, traffic remains in a state of nearly 
homogeneous flow and the jamming conditions never occur 
(tested for 106  simulation steps). If we start the simulation 
for increasing values of 𝜀𝜀 , however, the jamming state 
arises more and more quickly, fo r instance, on average after 
468.8  simulat ion steps for 𝜀𝜀 = 0.875 , if we start the 
simulation from the mentioned equidistant distribution of 
vehicles. 

The bottom part of Figure 1 visualizes to which average 
velocity the system converges in the long run. Apparently, 
for increasing noise values the flow of traffic is decreasing. 
It is important to note that for 𝜀𝜀 = 0.625 and above the 
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equilibrium state, whose average velocity is plotted, 
contains a traffic jam (as indicated by the top chart). 

 
Figure 1.  Krauss-based traffic simulation for the scenario described in the 
text: Jam emergence and average vehicle velocity subject to varying noise 
levels 

Figure 2a) visualizes the development of the situation on 
the track for a noise value of 𝜀𝜀 = 0.875. While, in itially, 
traffic is running smoothly, at some point of t ime small 
disturbances start to grow into significant congestions with 
a drop in average traffic flow. In  this figure, a row of pixels 
shows the distribution of vehicles across the track for one 
instant of time (they move from left to  right). W ith time 
steps increasing from top to bottom, this type of 
visualizat ion captures the development of t raffic flow over 
time. Specifically, this plot visualizes the first 700 
simulation steps. Note that the varying colors of the 
individual vehicles are used for the purpose of better 
presentation only. Part  b) of this figure shows the saturation 
state of the same scenario  reached after 2000 time steps: 
Obviously, the system has gone into an equilibrium state 
with one big traffic jam and an average vehicle velocity of 
only 𝑣̅𝑣 = 1.305. 

4.2. Learning Experiments 

So far, we have focused on the actual conditions present 
in traffic simulat ions following the Krauss model. Next, we 
pursue the approach proposed in Section 4 and equip all 
vehicles with a learn ing agent. As pointed out, the agents' 
goal is to move quickly, where the reinforcement learning 
approach ought to make them develop an incentive to avoid 
jammings since the velocity of any vehicle in  a jamming 

state is low. Consequently, we are interested in both the 
average velocity the agents yield when testing their learned 
policies as well as in the question whether they successfully 
avoid traffic congestions. In so doing, we target the 
following primary learning goals. 

 
Figure 2.  Starting from the initial state with equidistantly distributed 
vehicles, the selfish driving behavior under the Krauss update equations 
soon leads to minor congestions (a). After 2000 simulation steps a steady 
jam has emerged (b). Part (c) provides a snapshot taken during learning. The 
vehicles are reset to the starting state, after their inexperience has brought 
them into a jamming state. When the finally learned state-action value 
function is exploited greedily by the agents (shown in (d)), a homogeneous 
flow of high average velocity arises. The noise level in all parts is 𝜀𝜀 =
0.875 

• As depicted in Figure 1, the human driv ing behavior 
captured in the Krauss model leads to the emergence of 
severe traffic jams. Avoiding this by the use of intelligent 
agents controlling the vehicles is our first goal. 
• No jam ever emerges under the “trivial” policy  where 

the traffic participants move not at all or at  very little  speed. 
Of course, this is not a reasonable approach, which is why 
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our second goal is to make the agents learn to move at least 
as quickly as in the Krauss model, while also striving for the 
first goal, i.e. preventing jams.  
• Our third concern regards the amount of fuel consumed 

by the learning agents which, of course, ought to be 
minimized. 

We start by focussing on the problem setting with 
𝜀𝜀 = 0.875. The agents use a discount factor of 𝛾𝛾 = 0.99 
and, in order to account for the non-Markovian environment 
due to the changes in the policies of the other agents, a 
non-decaying learning rate 𝛼𝛼 = 0.1. All 𝑄𝑄𝑖𝑖  functions are 
initialized to 𝑄𝑄𝑖𝑖 ≡ 0.0. During learning, each agent picks a 
random act ion with probability of 0.01, and otherwise its 
currently best action as indicated by its 𝑄𝑄𝑖𝑖  function (cf. 
Equation 14). 

Part (c) of Figure 2 provides a snapshot from the track 
while the learn ing process is going on. Every time the 
system has entered a jamming state, the simulation is reset 
and the learning process continues again from the init ial 
situation with all vehicles distributed equidistantly. As can 
be seen, the number of simulation steps until the collective 
of agents runs into a jam is increasing as learning proceeds. 

 
Figure 3.  Online learning progress for a setting with 𝑚𝑚 = 100 
independent learning agents: The vehicle controlling behavior of the Krauss 
model is clearly outperformed. Noise level: 𝜀𝜀 = 0.875 

Figure 3 summarizes the development of the traffic flow, 
i.e. the average velocity of all vehicles, during a typical 
learning run fo r 𝜀𝜀 = 0.875 . As already said, at the 
beginning of learning the traffic flow breaks down due to 
the emergence of a jam, but after approximately 2000 
simulation steps the agents have successfully learned to 
prevent jams from occurring any further. Note that in  a 
single time step each agent does an individual update to the 
shared data structure storing the 𝑄𝑄𝑖𝑖  function. Thus, 
because we have 𝑚𝑚 = 100 agents, this plot corresponds to 
a total of 500k updates to the local state-action value 
function. 

On the one hand, this is a strong result as it indicates that 
the agents have learned in which  situations it is advisable to 
drive less aggressively and to no further increase their speed. 
On the other hand, this more farsighted driving policy 
stabilizes the average velocity at about 𝑣̅𝑣 = 1.515 which is 
16.1% above the value 𝑣̅𝑣 = 1.305 achieved in the standard 
Krauss model under the same settings (cf. Figure 1, right). 

In Figure 4 an excerpt of the resulting vehicle controlling 
policy, derived greedily from the learned state-action value 

function, is plotted. The state space to be considered by the 
agents is three-dimensional, so the figure p lots, for six 
different values of the vehicle's own velocity the optimal 
action subject to the preceding vehicle's current velocity and 
the gap between the vehicle at hand and its predecessor. 
The two actions available to the agent (𝐴𝐴𝑖𝑖 = {0,1}, cf. 
Definition 4) are shown in different shades of gray (light: 
accelerate, dark: do not accelerate).  

 
Figure 4.  Part of the local driving policy acquired: The agents have 
discovered regions of 𝑆𝑆𝑖𝑖 where it  is advantageous to behave less selfishly 
and accelerate no further (dark gray). This cautiousness prevents traffic jams 
from emerging 

Clearly, in the Krauss model – and, hence, by human 
drivers – the act ion “accelerate” would  be chosen in any 
situation. The adaptive agents, by contrast, have figured out 
those regions of the abstract state space in which it is better 
to no further accelerate their current velocity (entries in 
dark g ray). This cautiousness prevents traffic jams  from 
emerging. Note that the medium gray  regions are beyond 
the scope of the learning task as they cannot be entered due 
to the dynamics of the Krauss model. For example, those 
states correspond to situations that would violate the 
guarantee of motion without collision in the Krauss model. 

The traffic patterns that arise when the learned jo int 
policy is applied in the simulation are shown in part (d) of 
Figure 4. The behavior of the drivers is now less selfish, 
possibly a little more conservative and, as a consequence, 
no longer yields traffic jams (tested for 106  simulation 
steps).  

If, due to the challenging level of noise (𝜀𝜀 = 0.875 , 
minor congestions emerge, then these can be resolved and 
do not lead to a jam – instead a homogeneous, constant flow 
is attained. This also comes along with a 16.1% gain in 
terms of increased average vehicle velocity as pointed out 
above. 
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We also investigated the even more challenging task of 
applying the learned driving policy to different noise levels 
𝜀𝜀, i.e . to situations for which it was actually not trained. 
Most notably, the acquired policy outperforms the standard 
Krauss behavior as it reliab ly prevents jams from emerging 
for all noise values 𝜀𝜀 ≤ 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.875. Beyond this, for 
noise levels not too unsimilar from 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  there is also a 
gain in terms of increased traffic flow (printed in bold in 
Table 1). 

Table 1.  Learning results for different noise levels during learning and 
during the application of the learned policy 𝜋𝜋𝑖𝑖 are contrasted to the traffic 
patterns arising under the standard Krauss model. The learners are 
successful in preventing traffic jams (jam: •, no jam: o) and in achieving 
high average vehicle velocities (recall that 𝑣𝑣𝑚̅𝑚𝑚𝑚𝑚𝑚 = 2.0  under 𝜀𝜀 = 0.0), 
when compared to the standard Krauss model 

Test 
Noise 
Level 

Krauss 

Model 

𝜋𝜋𝑖𝑖 Learned Under Noise of 

𝜀𝜀 = 0.875 𝜀𝜀 = 1.0 

Jam 𝑣𝑣̅ Jam 𝑣𝑣̅ Jam 𝑣𝑣̅ 

𝜀𝜀 = 0.5 o 1.784 o 1.636 o 1.600 

𝜀𝜀 = 0.625 • 1.665 o 1.590 o 1.506 

𝜀𝜀 = 0.75 • 1.485 o 1.554 o 1.413 

𝜀𝜀 = 0.875 • 1.305 o 1.515 o 1.368 

𝜀𝜀 = 1.0 • 1.162 • 1.078 o 1.334 

We repeated the entire series of experiments also for an 
even larger noise level during training (𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1.0) and 
achieved comparably  convincing results: The trained agents 
reliably avoid jams for any noise level they are faced with. 
Moreover, they yield h igher traffic flows than the standard 
Krauss behavior for values of 𝜀𝜀 that are equal or slightly 
smaller than the noise present during the training phase. 

A secondary measure which might be easily derived from 
the driving behavior of the agents is their fuel consumption 
(and, hence, their emission of fumes). We employ a 
straightforward estimat ion of fuel consumption according to  

𝑢𝑢(𝑣𝑣) = 𝑎𝑎𝑣𝑣2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 +𝑑𝑑/𝑣𝑣 
where 𝑢𝑢(𝑣𝑣)  denotes the fuel usage per distance subject to 
the velocity 𝑣𝑣 of the vehicle. Clearly, the constants in this 
simple model would  have to be fitted to the parameters of 
the vehicles as well as to external factors. For a rough 
estimation that fits our simulation  setting, we employ 
𝑎𝑎 = 𝑐𝑐 = 2 , 𝑏𝑏 = −2 , and 𝑑𝑑 = 1 . Thus, for example, 
driving constantly at 𝑣𝑣ℎ𝑜𝑜𝑜𝑜 = 2.0 , a vehicle consumes 
𝑢𝑢(𝑣𝑣ℎ𝑜𝑜𝑜𝑜) = 5.5 fuel units for passing the track of length 𝑑𝑑. 

Table 2 summarizes the fuel consumption levels for 
different noise levels in the standard Krauss model under 
free flow (e.g. at the beginning of a simulation) and when a 
jam has emerged (as in Figure 3b). 

When comparing to the fuel consumed by the vehicles 
controlled by the adaptive agents, we observe a significant 
reduction of fuel usage which can be tributed to two key 
facts: On the one hand, the learning agents aim at 
preventing the emergence of traffic jams. Since jams are the 
main reason for excessive fuel usage, to this end a 
substantial advantage is achieved. On  the other hand, the 
learners also acquire a smooth and less aggressive driving 

behavior which, by default, also lowers fuel consumption in 
free flow. This, of course, comes along with slightly s maller 
average vehicle velocities compared to the ones attained by 
the standard Krauss model (cf. Table 1). 

Table 2.  Approximate levels of fuel consumption for varying noise level. 
Compared to the consumption in the standard Krauss model fuel usage is 
heavily reduced, if the vehicles employ the learned policies 

Test 
Noise 

Krauss Model 𝜋𝜋𝑖𝑖 Learned Under Noise 

No Jam Jam 𝜀𝜀 = 0.875 𝜀𝜀 = 1.0 

𝜀𝜀 = 0.5 6.797 - 6.817 7.105 

𝜀𝜀 = 0.625 6.488 24.075 6.331 5.638 

𝜀𝜀 = 0.75 6.908 24.848 5.928 4.832 

𝜀𝜀 = 0.875 6.787 23.715 5.437 4.410 

𝜀𝜀 = 1.0 6.968 21.927 30.831 4.304 

5. Conclusions and Future Work 
In this article, we have proposed a novel mult i-agent 

learning approach to microscopic traffic flow control. We 
have provided both a formal grounding of the approach 
taken as well as an empirical evaluation of its properties. 
The latter has shown that a significant improvement of 
traffic quality – in terms of jam prevention, flow 
optimization, and fuel consumption min imization – can be 
achieved, if the selfish behavior of human drivers is 
replaced by the vehicle controlling policies learned by the 
agents. 

Our study opens a number of opportunities for interesting 
directions of future research. The online learning algorithm 
we were using deals wastefully  with the train ing data it 
collects. To this end, the utilization o f state-of-the-art 
batch-mode reinforcement learn ing algorithms, which are 
known for their efficiency in data usage, seems promising. 
This point is also accompanied by  the issue of using a more 
sophisticated approach for approximating the state-action 
value function. Another interesting challenge is the transfer 
of our ideas to a simulation with mult iple lanes and passing 
maneuvers which are also supported by the Krauss model, 
as this would also increase the relevance of our approach to 
a practical application. 
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