
Communication in Soccer Simulation:

On the Use of Wiretapping Opponent Teams

Thomas Gabel, Philipp Klöppner, Eicke Godehardt, Alaa Tharwat

Machine Learning and Computational Intelligence Group (MLCI)
Frankfurt University of Applied Sciences
60318 Frankfurt am Main, Germany

{tgabel|godehardt|aothman}@fb2.fra-uas.de, kloeppne@stud.fra-uas.de

Abstract. Inter-agent communication has been playing an important
role in soccer simulation 2D since its introduction. Its primary usage has
been to communicate with teammates in order to share state observations
to fill gaps in the players’ world models, to announce near future actions
like passes or requesting passes, as well as for sharing and synchronizing
on locker room agreements. In this paper, by contrast, our focus is on
the communication of the opponent team. We present an approach for
wiretapping and decoding opponent communication and systematically
evaluate its impact. Our main finding is that a team that wiretaps its
opponent and exploits intercepted information appropriately, can boost
its own playing performance significantly.

1 Introduction

When multiple agents need to act independently of one another, under real-time
constraints, and under a partial view of the world, inter-agent communication
is one mean to mitigate the challenges of distributed decision-making and of
coordinating agent behaviors. In robotic soccer, we face all of these challenges,
with different nuances across leagues. Given that robotic soccer represents also a
highly competitive domain, it is standing to reason that nearly any team exploits
the granted possibilities of communication to the extent the rules of the respec-
tive RoboCup league permit. As a consequence, the question arises whether some
team might gain an advantage, if it decides to wiretap its opponent and if it –
assuming that it somehow understands the contents of foreign communication –
exploits such eavesdropped information during its own decision-making process.
This is the research question that we are going to explore for the 2D simulation
league, subsequently.

We start off by providing relevant background information on the mechanics
and the general role of communication in soccer simulation (Section 2), before
we present the core ideas of an approach to learn the meaning of opponent
communication in Section 3 [4]. The task will be cast as a supervised learning
problem where deep convolutional neural networks will do the actual work of
decoding some foreign language message to readable data. Since the belong-
ing implementation has been realized using the TensorFlow (TF) framework

[1], we advocate Section 4 to a brief review of software engineering challenges
encountered when incorporating the TF-based implementation into an existing
RoboCup team. In Section 5, we return to our research question and empirically
evaluate the quantitative impact of our approach. In so doing, we introduce var-
ious communication-related modifications to our team FRA-UNIted, including
the aforementioned wiretapping ideas, and assess its performance against the
current world champion (Helios [2]). Besides reporting and visualizing the re-
markable impact, we critically discuss the approach before we conclude (Sec. 6).

2 Background

In what follows, we outline the general mechanics of communication in the 2D
simulation league and discuss relevant related work.

2.1 Communication in RoboCup’s Soccer Simulation 2D League

While direct communication among agents is prohibited, each agent is allowed
to broadcast a string of up to 10 characters in each of the 6000 time steps that
a regular game is made of. Such say messages are received by the Soccer Server
[9] and are handed on to those players in the subsequent simulation cycle which
had put their listening attention to the sender. Each agent can maximally hear
one message from a teammate plus one message from an opponent at a time.

9,0 Recv HELIOS2017_10: (kick 86.8 63.1)(turn_neck -73)(attentionto our 11)(say "BybzQQ(u9U")

9,0 Recv FRA-UNIted_5: (dash 100 -0)(turn_neck 7.65998)(say "72gtaUuDWT")(attentionto our 4)
9,0 Recv HELIOS2017_2: (turn -53.967)(turn_neck -31)

9,0 Recv HELIOS2017_4: (dash 60)(turn_neck -1)
9,0 Recv FRA-UNIted_4: (dash 100 -0)(turn_neck -89.2104)(say "6zfuDWN9VT")(attentionto our 6)
9,0 Recv HELIOS2017_11: (dash 100)(turn_neck 0)(say "PzdAc_")

Fig. 1. Excerpt of the text log file of RoboCup 2017’s final match (shortened).

Figure 1 shows an excerpt of the text log file of the 2017 final match, which
among other things reveals which actions were taken by some of the players
during time step 9. Most interestingly, some of the players made use of com-
munication by issuing say messages of up to 10 chars length, though, from a
human perspective, it seems nearly impossible to understand the contents of
these strings. In this regard, we refer to Section 5.2, where we exemplarily and
empirically reason on the actual contents of such say messages.

2.2 Related Work

Communication is an active field of research in the multi-agent systems com-
munity and, specifically, in robotic soccer. There has been a lot of work on
communication across leagues (e.g. in the MidSize league [8] or in the 3D sim-
ulation league [7]). For the 2D league, communication has been an important

building block ever since, though the rules on how to communicate, as enforced
by the Soccer Server [9], have changed over the years. In early work, Stone and
Veloso [12] focused on developing techniques for inter-agent communication in
unreliable, low-bandwidth environments, assuming that agents can communicate
256 bytes every two time steps. Starting with the change from Soccer Server ver-
sion 7 to 8 in 2002, the maximum length of players’ say messages has, however,
been limited severely (to the 10 chars mentioned), rendering “plain text” com-
munication nearly useless. The general potential for communication to improve
distributed decision-making in multi-agent systems is also considered in [13].
Our experimental methodology is, to some extent, in line with [10], who theoret-
ically and empirically evaluated the utility of varying communication protocols
in soccer simulation, and with [15] to which we relate our work more thoroughly
in Section 5. Finally, we point the reader to the related work section in [15] for
an excellent overview on multi-agent communication and coordination.

3 Eavesdropping Opponent Agent Communication

In this section, we aim at providing a concise overview of the approach to eaves-
drop and decode intercepted messages sent by an opponent soccer simulation
team, which has first been presented in [4]. The basic idea of this approach is to
pose the problem as a supervised learning task and to leverage state-of-the-art
deep learning techniques for recognizing the meaning of messages heard. The
authors make the obvious assumption that the contents of an intercepted mes-
sage bears information whose transmission is beneficial to the opponent team,
containing match-related data such as (1) ball-related, (2) player-related, (3)
pass-related, or (4) team strategy-related junks of information. While the au-
thors of [4] have primarily concentrated on (1) and (3), the focus of the paper
at hand is on pass-related information, more specifically on the recognition of
adversarial pass announcements, as well as on the quantitative impact that wire-
tapping the opponent agents can have on our own team’s playing performance.

3.1 Learning Problem Formalization

Defining the problem as a supervised learning task, a set of training patterns
P = {(xp, tp)|p = 1, . . . , |P|} is required. An input vector xp corresponds to a say
message C = (cs, . . . , c0) with s < 10 and literals ci from the alphabet A of 94
printable ASCII-128 characters. So, the discrete set of transmittable messages is
A = ∪9

i=0A
i which in our setting boils down to |A| ≈ 5.1 · 1019.

In regard to the target values tp, however, we arrive at two sub-tasks relevant
to the specific task of opponent pass announcement recognition:

(a) The problem of classifying whether an intercepted say message C contains a
pass announcement or not. Accordingly, it holds tp ∈ {true, false}.

(b) Given that the classifier from (a) states that C contains a pass announcement,
the next logical challenge is to extract details of the pass announcement

from C, such as its starting point or velocity. Thus, we obtain a classical
regression problem with tp ∈ R

l (l = 4 in case of pass announcements, as x
and y components of the start position and velocity characterize the pass).

If we proceed on the assumption that the opponent team under consideration
does announce its pass (this is a valid assumption for the 2D league), the training
data set can be compiled easily by running a large batch of matches against the
considered opponent team, recording its communication as well as observing its
actual passes played. If, in so doing, a pass is accompanied by a say message C
sent simultaneously to or shortly before the pass is played, then it is likely that
C contains a pass announcement plus details of the intended pass.

3.2 Bit-Level Representation of Communicated Messages

As pointed out, the goal is to build and train a deep neural network into which
some representation of the say message C is fed and whose output neuron(s)
provide(s) decoded pass-related information. Intuitively, it seems tempting to
feed a numeric representation of each letter ci (e.g. its ASCII code) into the
first layer of the network. Such an approach might indeed be expected to yield
good results, if the payload to be transmitted is generally not distributed across
multiple chars and if certain pieces of information were known to be located at a
fixed position within C. Given the limited communication bandwidth, however,
these assumptions are unrealistic to be made. Accordingly, in [4] it has been
suggested to employ a bit level representation of C. Among other merits, such a
representation will contain bit patterns that hint to the type of data encoded in
the message as well as patterns that can be decoded to pass parameters1.

Most importantly, a bit representation allows for the utilization of convolu-
tional neural networks [6, 5] that perform one-dimensional convolution on the
bit sequence in order to detect features that allow for classifying a message as
containing a pass announcement or for extracting pass parameters. Therefore,
any say message C ∈ A is mapped to a bit sequence b(C) using a function
b : A → {0, 1}B where B is determined by the length of the message and the
size of the underlying alphabet (in our case B = 10⌈log2 94⌉ = 70).

The authors of [4] suggest different ways of defining that function b, discussing
in detail the motivation, advantages and limits of each suggested bit level encod-
ing. In the rest of this paper, we stick to the “Base-|A| Bit Level Representation”
(b|A|) which, according to [4], makes some assumptions on how opponent teams
might have encoded their say messages, and which has brought about superior
empirical results when using it as the basis of the decoding approach.

3.3 Model Architecture and Performance

We utilize the same deep convolutional neural network architecture as the one
described in [4] (two convolutional layers, ReLu activations, max pooling, fully

1 Under the assumption, that the opponent team does not employ some form of so-
phisticated data encryption or compression techniques before broadcasting messages.
Hence, we proceed on the assumption that communicated data is not encrypted.

connected final layers, dropout, Adam optimizer) with one minor exception: For
the task of extracting the numeric pass details (x/y of pass start position and
velocity) we do not employ a single trained model with an output vector of length
four, but four separately trained models with the same base architecture, but
a single output neuron each (one of these for each of the four pass announcing
variables, px, py, vx, vy). With four models using a single output neuron each
and trained separately, we were able to achieve better generalization capabilities,
i.e. the average test errors of the to-be-predicted four numeric pass details were
significantly smaller compared to the monolithic model with a four-dimensional
output (even when the latter was allowed to be trained for a much longer time).

For the general empirical performance of the approach, we again refer to
[4]. Most notably, it is possible to train a reliable pass announcement classifier
with as little as 50 sample passes observed (accuracy of 98.6%). For 20k training
examples, the accuracy increases to 99.2%. Inferring pass announcement details
reliably requires substantially more training samples. However, with 20k passes
in the training data set, the average error of the pass start position is less than one
meter (on the 2D playing field with 105m length and 68m width), and the average
pass velocity error is generally less than 0.1 m

step (where vx/y ∈ [−3 m
step , 3

m
step]).

Based on these definitions, implementations and the reported decoding accu-
racies, our idea was to incorporate this approach to eavesdrop and understand
opponent team communication into our competition team. This raised two ques-
tions. First, what engineering effort is required to make such an approach prac-
tically usable in an existing soccer simulation team. And second, what are the
benefits in terms of possibly increased playing performance, if we succeed in en-
abling our team to reliably decode and exploit opponent team communication.

4 Implementation within the FRA-UNIted Framework

The learning approach outlined above had first been implemented in a proto-
typical manner utilizing TensorFlow’s well-documented Python API. However,
deploying this approach within the FRA-UNIted competition team, which is
implemented in C++ entirely, issued quite an engineering challenge.

– Doing classification/regression with the trained networks utilized via Python
scripts and using inter-process communication with our C++-based agent
binary would have been a first option. But the resulting IPC overhead in
conjunction with the need to possibly set up TF on competition machines
render this approach impractical from our point of view.

– Porting the entire approach to C++ did not represent a valid option, too,
since TF’s C++ API does not enable access to optimizer classes such as the
Adam optimizer for training the decoding models.

– We thus had to opt for a hybrid approach where the network topology defini-
tion and the training process of the deep networks takes place in the Python
world. During matches, stored networks (TF checkpoints) are loaded via
TF’s C++ API and are utilized by our agent via a shared TF library that
we built and that is dynamically loaded by the FRA-UNIted agent.

TF

Checkpoint
(deep networks)

TF FRA-UNIted

Agent

Opponent

Agent

Soccer Server

Training

Data

Python
C++

Training Phase Deployment (during matches)

Model

Definition

Training Process

(Stochastic Gradient Descent)

Protocol Buffers

Shared

Library

Fig. 2. Python scripts define the topology of the deep networks and use previously
gathered data for training. Training results and model definitions are stored in sepa-
rate files. The latter are generic for all teams, while the former are different for each
opponent team we face. Via TF’s C++ API, both files are then utilized by our agent.

The specific challenges and hurdles of creating and utilizing a shared C++
library that contains vast parts of TensorFlow as well as the technical and engi-
neering details of our corresponding implementation can be found in our current
team description paper [3].

5 Empirical Evaluation

In [15], the authors have presented the results of a study to measure the ef-
ficiency of inter-agent communication and its influence on the general playing
performance of robotic soccer simulation teams. While in that paper the focus
has been on the analysis of the structural and functional connectivity of the graph
of communicating players, our main interest is on quantifying the differences in
playing strength of a team that applies varying communication behaviors which
is related to the notion of design points used by the authors of [15].

5.1 Communication Behavior Variants (CBV)

In all our experiments, we abbreviate our team FRA-UNIted as Team A. The
version with which Team A participated in last year’s world championships
(RoboCup 2017) represents our baseline, labeled A Baseline17. We selected the
current world champion (Helios [2]) as the opponent (calling it Team B) against
which to compare. More specifically, we selected both, its 2017 champion bi-
nary as well as its predecessor from RoboCup 2016 (labeled B Baseline17 and
B Predecessor16, respectively). In order to reliably quantify the contribution of
communication to the overall performance of Team A, we adapted its baseline
version, thus yielding the four communication behavior variants (CBVs) consid-
ered subsequently.

(a) A Baseline17 : Version of Team A used at the RoboCup 2017 tournament.
(b) A NoComm: While no change to the agents’ playing behavior has been

made, the agents of Team A no longer use any form of inter-agent com-
munication. So, this CBV should perform worse than the baseline.

(c) A NoOwnPasses : Again, there is no change in the agents’ playing behavior,
but passes that are intended and/or are being played will no longer be com-
municated among the players of Team A. All other aspects of team-internal
communication (like communicated player information or ball data) remain
untouched.

(d) A OppPassExploit : This communication behavior variant is in the center
of our interest since it represents the baseline version enhanced by the im-
plementation of the approach to eavesdrop and understand opponent pass
announcements, whose basic ideas are described in Section 3.

It is important to stress that the actual exploitation of an intercepted oppo-
nent pass announcement in (d) has intentionally been implemented in a straight-
forward manner in order to facilitate an utmost fair assessment of the impact of
the approach. Each decoded opponent pass announcement is treated in exactly
the same manner as a pass announcement received from a teammate (like in
(a) or (b)). Accordingly, no additional logic or special cases for opponent passes
were programmed, which allows us to assess the benefits of having wiretapped
the opponent team as accurately as possible. Hence, from the point of view of
an A OppPassExploit agent, there are just “a few more” pass announcements
compared to the baseline version of the agents. As a consequence, the advantage
of (d) over (a) is, essentially, time: An A OppPassExploit agent will, in general,
know earlier about an opponent pass than a baseline agent and, thus, will be able
to react on this faster. Besides the changes mentioned, the only necessary mod-
ification of A OppPassExploit agents compared to their baseline counterparts
concerned their listening attention-to behavior: In order to be able to reliably
receive say messages from the opponent ball holder h, the listening attention
had to be put to h instead of putting it to some teammate (as a baseline agent
would do, by contrast), if h controls the ball.

5.2 Distribution of Communication Data

In order to assess the communication restrictions imposed on the A NoComm

and A NoOwnPasses CBVs, it is advisable to quantify the amount of communi-
cation data that is on average received by a A Baseline17 agent. We refer to the
publicly available source code release of Team A which reveals the inner workings
of its communication policy [11]. Table 1 shows that 70% of all communicated
pieces of information are player-related, i.e. positions of teammates or opponents
recently seen. By contrast, pass-related information make up for only 0.8% of all
communicated data chunks, corresponding to 96.3 pass announcements and 2.6
pass requests per player per game on average. Moreover, that table summarizes
the average distribution of the total amount of data sent among the five con-
sidered types of soccer-related information (in total number of bits received and
the corresponding share of communication channel usage per type). Essentially,
only 1.7% of the overall communication bandwidth is used for announcing passes
to teammates.

As a consequence, A NoOwnPasses agents (which do not receive pass an-
nouncements from teammates) disregard circa 0.8% of all data chunks that are

Overhead Ball-Rel Pass-Rel Player-Rel Strategy-Rel

Avg. number of payload units 714.4 615.5 98.9 8535.8 3030.4
sent per match (total and share) 5.0% 0.8% 69.5% 24.7%

Avg. amount of bits sent per match 3571.9 104.4k 3102.8 153.6k 15151.9
Share of comm. channel usage 1.9% 5.6% 1.7% 82.6% 8.2%

Table 1. Utilization of the Communication Channel by A Baseline17 : Besides over-
head (headers etc.), 4 soccer-related categories of information are shared across agents.

communicated in our team, which makes up for 1.7% of the overall data payload.
By contrast, A Baseline17 disregards nothing, and A NoComm disregards the
entire communication.

5.3 Empirical Methodology

All four communication behavior variants of Team A were matched against both
versions of Team B. For each combination, 5000 matches were played in order
to form score averages and, hence, to account for the stochastic nature of the
Soccer Server. To assess the overall team playing strength and to analyze the
impact of altered communication schemes, we adopt the perspective of Team A

and, for the rest of this paper, focus on the following performance measures.

– µa: average number of goals scored during a single match by Team A with
belonging standard deviation σa, calculated over the set of matches played.

– µb: average number of goals scored by Team B, i.e. the average number of
goals conceded by Team A with belonging standard deviation σb.

– µp: expected number of points Team A gains from a match against Team B

on average, when a victory is rewarded with three points, a draw with one,
and a defeat with none.

Given that the modifications to the communication behavior of the CBVs will
most likely have affected the standard deviations of the performance measures
considered, we applied an unequal variance t-test (also known as Welch test [14])
in order to determine whether any empirically observable change of µa or µb is
statistically significant (and if so, at which confidence level).

5.4 Results

Figure 3 shows the variability in playing strength of the four Team A CBVs con-
sidered. Here, A Baseline17 is considered as the baseline (100%) against which
the three other variants are compared with respect to the relative amount of goals
scored and conceded against both versions of Team B. Consistently, an increased
utilization and exploitation of communicated information brings about an in-
creased overall performance. Interestingly, when playing against B Baseline17,
the activation of our wiretapping and opponent pass announcement decoding ap-
proach yields an increase in the number of goals shot by 8.8% and a simultaneous
decline in the number of goals conceded by 4.4%.

48.51%

85.47%

100.00%
108.83%

160.57%

104.89%
100.00%

95.60%

40%

60%

80%

100%

120%

140%

160%

A_NoComm A_NoOwnPasses A_Baseline17 A_OppPassExploit

Scored against B_Baseline17

Conceded against B_Baseline17

41.83%

81.99%

100.00% 102.19%

163.38%

103.13% 100.00%
96.32%

40%

60%

80%

100%

120%

140%

160%

A_NoComm A_NoOwnPasses A_Baseline17 A_OppPassExploit

Scored against B_Predecessor16

Conceded against B_Predecessor16
A

m
o

u
n

t
o

f
G

o
a

ls
 S

co
re

d
/C

o
n

ce
d

e
d

o
f

D
if

fe
-

re
n

t
D

e
si

g
n

 P
o

in
ts

 R
e

la
ti

v
e

 t
o

A
_

B
a

se
li

n
e

Fig. 3. Taking CBV A Baseline17 as the ground truth, these charts visualize the rela-
tive changes in µa and µb when the other three considered CBVs are matched against
Team B (left: against B Predecessor16, right: against B Baseline17).

While Figure 3 shows performance measures relative to Team A’s baseline,
the left chart in Figure 4 highlights absolute values of µa and µb for all combi-
nations of CBVs of Team A having played against both Team B versions. The
lengths of the line segments in both data series convey a good impression of
how the overall playing capabilities of Team A are impacted by switching off/on
the entire team-internal communication, just team-internal pass announcements,
and eavesdropping and exploiting opponent pass-related communication. Ap-
parently, the impact and usefulness of the opponent pass decoding, is more dis-
tinct when playing against Team B ’s 2017 champion version than when playing
against its 2016 predecessor, though the former has, of course, a generally higher
playing strength than the latter. It is also worth noting that, when testing against
B Baseline17, the gain/loss of switching on/off the exploitation of Team B ’s de-
coded pass announcements is almost as pronounced as the one resulting from
switching on/off our team-internal pass announcements.

0.146:0.895

0.287:0.565
0.350:0.548

0.358:0.527

0.151:1.199

0.265:0.783

0.310:0.747
0.338:0.714

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.1 0.2 0.3 0.4

A
ve

ra
g

e
 G

o
a

ls
 S

co
re

d
 B

y
 T

e
a

m
 B

Average Goals Scored By Team A

A_NoComm

A_NoOwnPasses

A_Baseline17

A_OppPassExploit

Team A vs. B_Predecessor16

Team A vs. B_Baseline17

19.1% 19.0%

12.2%
15.0%

49.0% 50.2%
45.2% 45.5%

3
1

.9
%

3
0

.8
%

42.6%
39.5%

1
.0

6
3

1
.0

7
2

0
.8

1
8

0
.9

0
6

0.6

0.7

0.8

0.9

1

1.1

0%

10%

20%

30%

40%

50%

60%

A_Baseline A_OppPassExploit A_Baseline A_OppPassExploit

E
xp

e
ct

e
d

 P
o

in
ts

 p
e

r
M

a
tc

h

S
h

a
re

 o
f

M
a

tc
h

e
s

W
o

n
/D

ra
w

n
/L

o
st

Won

Draw

Lost

Exp.Pts.

Team A vs. B_Predecessor16 Team A vs. B_Baseline17

Fig. 4. Left: Average scores of the four Team A CBVs when facing both Team B

versions considered. Right: Share of matches won/drawn/lost as well as expected points
µp when A Baseline17 and A OppPassExploit face both Team B versions.

The right part of Figure 4 concentrates on the expected points µp to be ob-
tained when playing against the two versions of Team B, but just focuses on a
comparison of the two CBVs A Baseline17 and A OppPassExploit. To do so, it
visualizes the share of matches won/drawn/lost by Team A as well as the exact

value of µp (secondary axis). With respect to opponent B Predecessor16, the
exploitation of heard opponent pass announcements reduces the percentage of
games lost by roughly 1%, increasing the share of draws accordingly, thus re-
sulting in an improvement of µp by about 1%, too. By contrast, when evaluating
against the current world champion B Baseline17, we observe an increase of
≈ 3% in the share of matches won at a constant level of draws, which amounts
to a 10.8% growth of the expected points per match (from 0.818 to 0.906).

Oppo- Mea- CBV with conf. level of a significant change vs. A Baseline17

nent sure A NoComm pa/b A NoOwnPass pa/b A Baseline17 A OppPassExp pa/b
B Prede- µa ± σa 0.146 ± .490 .001 0.287 ± .536 .001 0.350 ± .578 0.358 ± .575 .25
cessor16 µb ± σb 0.895 ± .966 .001 0.565 ± .730 .1 0.548 ± .746 0.527 ± .739 .1

B Base- µa ± σa 0.151 ± .380 .001 0.265 ± .506 .001 0.310 ± .553 0.338 ± .555 .01
line17 µB ± σb 1.199 ± 1.135 .001 0.783 ± .895 .01 0.747 ± .878 0.714 ± .842 .025
Table 2. Performance measures µa and µb for all CBV pairings. pa and pb stand for
the error levels at which a change in µa and µb (i.e. a change from µA Baseline17

a/b to any
other µa/b value) is statistically significant.

Table 2 summarizes the values of performance measures µa and µb for n =
5000 game repetitions for each CBV playing against both Team B versions. Also,
we report the significance levels at which the null hypothesis for the Welch test
has to be rejected (null hypothesis: performance measure did not improve/worsen
(compared to A Baseline17) due to switching on/off the communication fea-
ture of the respective CBV). While the test statistic allows us to confirm the
expected changes at very low error rates in most cases, for the evaluation of
A OppPassExploit versus the older 2016 version of Team B we can attest the
expected improvements in µa and µb at an error level of 0.1 and 0.25, only.

5.5 Discussion

In the experimental evaluation at hand, our selected opponent (Team B) was
the current world champion. Thus, all conclusions refer to this opponent in the
first place. However, as pointed out by [4], similar or even better communication
learning performance can be expected, when playing against other 2D top teams.
Besides, by having selected the currently best team in the world, we have set a
high standard and it is standing to reason that our findings can be generalized
to (at least several) weaker teams. Clearly, when switching to another opponent
a separate decoding model in the form of a deep convolutional neural network
would have to be trained beforehand. Also, we should emphasize the fact that the
advantages reported can only be exploited in real tournament games under the
assumption that the opponent does not change or encrypt its communication.

The disk space requirements of Team A increase substantially, when incor-
porating the presented approach into our team. Having consumed 6.9MB in
total in its RoboCup 2017 version (A Baseline17), the new working binary

(A OppPassExploit) now requires 110MB where 96MB are consumed by the
created TensorFlow shared library and 7.3MB are due to newly trained neural
networks for communication decoding.

The computational burden caused by the TensorFlow-based opponent com-
munication decoding is acceptable. On a 4-core i7 with 3GHz (with all 22 players
plus 2 coaches plus the Soccer Server running in parallel on this single machine)
without GPU support a say message classification requires between 3 and 4
milliseconds. The subsequent determination of pass start and velocity vectors
costs between 9 and 10 milliseconds on average. Given that during competitions
teams are allowed to employ several machines (typically only 3-4 agents play on
a multi-core machine, i.e. a separate CPU core is available for each agent), the
mentioned calculation times are likely to be around or even below 1.5 millisec-
onds. With respect to the required training times of the deep neural networks,
which of course strongly depend on the hardware used and on the availability of
powerful GPUs, we refer to the numbers we reported in [4].

It is worth noting that an agent of CBV A OppPassExploit does receive,
decode, and exploit 66.2 passes from Team B during one full match on aver-
age, and that this is almost 70% of the number of pass announcements they
receive from their own teammates (96.3 on average per game). However, a sub-
stantial amount of these opponent pass announcements are “safe passes” which,
despite the fact that we hear and understand them, by no means, allow for tack-
ling the pass receiver or in conquering the ball, immediately. We found that an
A OppPassExploit agent gets to know that an opponent pass is being played on
average 2.2 time steps earlier than an A Baseline17 agent which has to rely on its
(restricted, noisy, and non-omnidirectional) vision system to see the pass. Given
the comparatively small number of exploitable opponent passes and, hence, intu-
itively small qualitative influence on the overall course of the game, the reported
quantitative impact on the general playing strength of Team A is remarkable.

6 Conclusion

It has been argued by numerous authors that the utilization of team-internal
communication is highly beneficial in soccer simulation 2D. In this paper, we
have substantiated that claim by two means. On the one hand, we have com-
pared the empirical playing strength of our team (FRA-UNIted) when disabling
certain paths of communication across teammates. On the other hand, we have
utilized a deep learning-based approach for decoding the contents of say messages
broadcast by the opponent team. In so doing, we could show that the playing
performance of a team that wiretaps an opponent and exploits intercepted in-
formation (in our case pass announcements) can be boosted significantly.

Since the mentioned deep learning-related part of the approach relies on a
TensorFlow-based implementation, a critical question concerns the practicability
of our approach. Powerful machine learning libraries and their APIs evolve fast.
In regard to the fact that our team binary should retain easily deployable on any
machine (e.g. during competitions or for reproducibility) it was our goal to utilize

the required TensorFlow functionality into our team with as little installation
or maintenance effort as possible. Hence, our delineations in Section 4 (and, in
addition, in our current team description paper [3]) are meant as an aid for teams
in the simulation league and beyond which intend to merge their team sources
with TensorFlow utilizing its C++ API.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems (2015), http://tensorflow.org/, software available from tensorflow.org

2. Akiyama, H., Nakashima, T., Fukushima, T.: HELIOS2017: Team Descrip-
tion (2017), www.robocup2017.org/file/symposium/soccer sim 2D/TDP HELIOS
2017.pdf, Supplementary to RoboCup 2017: Robot Soccer World Cup XXI

3. Gabel, T., Klöppner, P., Godehardt, E.: FRA-UNIted – Team Description 2018
(2018), tgabel.de/cms/fileadmin/user upload/documents/Gabel EtAl FU-18.pdf,
Supplementary material to RoboCup 2018: Robot Soccer World Cup XXII

4. Gabel, T., Tharwat, A., Godehardt, E.: Eavesdropping Opponent Agent Commu-
nication Using Deep Learning. In: Proceedings of Multi-Agent System Technologies
(MATES 2017). pp. 205–222. Springer, Leipzig (2017)

5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2017)
6. LeCun, Y.: Generalization and Network. Design Strategies. Technical Report CRG-

TR-89-4, University of Toronto (1989)
7. MacAlpine, P.: Multilayered Skill Learning and Movement Coordination for Au-

tonomous Robotic Agents. Ph.D. thesis, University of Texas at Austin, USA (2017)
8. Mota, L., Reis, L.: An Elementary Communication Framework for Open Co-

operative RoboCup Soccer Teams. In: Proceedings of the 3rd International Work-
shop on Multi-Agent Robotic Systems. pp. 97–101. Scitepress, France (2007)

9. Noda, I.: Soccer Server: A Simulator of RoboCup. In: Proceedings of the AI Sym-
posium 1995. pp. 29–34. Japanese Society for Artificial Intelligence (1995)

10. Prokopenko, M., Wang, P.: Evaluating Team Performance at the Edge of Chaos. In:
D. Polani, B. Browning, A. Bonarini, K. Yoshida, editors, RoboCup 2003: Robot
Soccer World Cup VII, LNCS. pp. 89–101. Springer, Padua, Italy (2003)

11. Riedmiller, M., Gabel, T., Schulz, H.: Brainstormers 2D: Public Source Code
Release 2005. Technical Report, University of Osnabrück (2005), source-
forge.net/projects/bsrelease/files/bs05publicrelease.documentation.pdf

12. Stone, P., Veloso, M.: Communication in Domains with Unreliable, Single-Channel,
Low-Bandwidth Communication. In: Drogoul, A., Tambe, M., Fukuda, T. (eds.)
Collective Robotics, pp. 85–97. Springer, Berlin, Germany (1998)

13. Stone, P., Veloso, M.: Multiagent Systems: A Survey from a Machine Learning
Perspective. Autonomous Robots 8(3), 345–383 (2000)

14. Welch, B.: The Significance of the Difference Between Two Means When the Pop-
ulation Variances Are Unequal. Biometrika (29), 350–362 (1938)

15. Zuparic, M., Jauregui, V., Prokopenko, M., Yue, Y.: Quantifying the Impact of
Communication on Performance in Multi-Agent Teams. Artificial Life and Robotics
22(3), 357–373 (2017)

