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Abstract. The main focus of FRA-UNIted’s effort in the RoboCup soc-
cer simulation 2D domain is to develop and to apply machine learning
techniques in complex domains. In particular, we are interested in ap-
plying reinforcement learning methods, where the training signal is only
given in terms of success or failure. In this paper, we review some of our
recent efforts taken during the past year, putting a special focus on rein-
forcement learning experiments in the context of 2D soccer simulation.

1 Introduction

The soccer simulation 2D team FRA-UNIted is the continuation of the former
Brainstormers project which has ceased to be active in 2010. The ancestor Brain-
stormers project was established in 1998 by Martin Riedmiller, starting off with
a 2D team which had been led by the first author of this team description paper
since 2005. Our efforts in the RoboCup domain have been accompanied by the
achievement of several successes such as multiple world champion and world vice
champion titles as well as victories at numerous local tournaments. Our team
was re-established in 2015 at the first author’s new affiliation, Frankfurt Uni-
versity of Applied Sciences, reflecting this relocation with the team’s new name
FRA-UNIted. Thus, the FRA-UNIted team is proud to look back on a 25-year
history in robotic soccer simulation this year.

As a continuation of our efforts in the ancestor project, the underlying and
encouraging research goal of FRA-UNIted is to exploit artificial intelligence and
machine learning techniques wherever possible. Particularly, the successful em-
ployment of reinforcement learning (RL, [13]) methods for various elements of
FRA-UNIted’s decision making modules – and their integration into the compe-
tition team – has been and is our main focus. Moreover, the extended use of the
FRA-UNIted framework in the context of university teaching has moved into
our special focus.

In this team description paper, we refrain from presenting approaches and
ideas we already explained in team description papers of the previous years
[4]. Instead, we focus on recent changes and extensions to the team as well as
on reporting partial results of work currently in progress. We start this team



description paper, however, with a short general overview of the FRA-UNIted
framework. Note that, to this end, there is some overlap with our older team
description papers including those written in the context of our ancestor project
(Brainstormers 2D, 2005–2010) which is why the interested reader is also referred
to those publications, e.g. to [6, 11].

1.1 Design Principles

FRA-UNIted relies on the following basic principles:

– There are two main modules: the world module and decision making
– Input to the decision module is the approximate, complete world state as
provided by the soccer simulation environment.

– The soccer environment is modeled as a Markovian Decision Process (MDP).
– Decision making is organized in complex and less complex behaviors where
the more complex ones can easily utilize the less complex ones.

– A large part of the behaviors is learned by reinforcement learning methods.
– Modern AI methods are applied wherever possible and useful (e.g. particle
filters are used for improved self localization).

Fig. 1. The Behavior Architecture

1.2 The FRA-UNIted Agent

The decision-making process of the FRA-UNIted agent is inspired by behavior-
based robot architectures. A set of more or less complex behaviors realize the
agents’ decision making as sketched in Figure 1. To a certain degree this architec-
ture can be characterized as hierarchical, differing from more complex behaviors,
such as “no ball behavior”, to very basic, skill-like ones, e.g. “pass behavior”.
Nevertheless, there is no strict hierarchical sub-divisioning. Consequently, it is
also possible for a low-level behavior to call a more abstract one. For instance,
the behavior responsible for intercepting the ball may, under certain circum-
stances, decide that it is better to not intercept the ball, but to focus on more
defensive tasks and, in doing so, call the “defensive behavior” and delegating
responsibility for action choice to it.



2 Case Studies on Data-Efficient Model-Based
Batch-Mode Deep Reinforcement Learning

One of our recent streams of activity aims at a deeper analysis and understanding
of fitted batch-mode reinforcement learning approaches where soccer simulation
provides an excellent testbed for controlled experiments.

2.1 Efficient State Transition Modelling

In soccer simulation, the dynamics of the environment are given by the Soccer
Server [9] software which models the effect of each agent’s individual action as
well as the impact of different sources of noise. Since the exact implementation of
the dynamics is publicly available thanks to the open-source implementation of
the Soccer Server, it is possible to employ it as a fundament for model-based RL
where we frequently need to determine the successor state s′ for a given pair of
state s and action a executed by the agent. This is, e.g., necessary in the context
of any kind of value iteration-like algorithm or, more generally, whenever some
action needs to be selected greedily given some value function [13].

We developed a light-weight reimplementation of the Soccer Server’s dynam-
ics that supports the modeling of all field player action types (kick, dash, turn,
tackle) which also correctly considers potential collisions of the agent with the
ball and allows basic support of noise modeling. So far, our investigations fo-
cus on a single agent, i.e. the agent at hand intends to model the result of its
own action. Nevertheless, it is also possible to apply this kind of state transition
modeling for other agents (assuming that one agent would know the action exe-
cuted by a teammate or opponent), but so far our implementation does not yet
support the modeling of superpositions of interactions (e.g. when two players
kick for the ball at the same time).

Since this implementation avoids any kind of (inter-process) communication
with the Soccer Server and leverages the general speed advantage of C++, it is
extremely fast and allows for pure agent-internal learning and analyses. For a
balanced mix of randomly generated single-agent states and random actions that
this agent executes, we found that we can simulate, model, and, hence, determine
the successor state on average in 0.137µs which gives rise to 7.3 million state
transition modelings per second on a single core of a contemporary 3-GHz CPU.

So far, we have employed the described state transition modeling primarily
in a deterministic matter, i.e. disregarding the noise that is added by the Soccer
Server. Bringing our modeling of noise in full alignment with the way the Soccer
Server adds randomness to the simulation represents a direction for future work.

2.2 Batch-Mode RL for the Dribble Task

The task in model-free batch reinforcement learning (BRL, [8]) is to find a policy
that maximizes the sum of expected rewards where, in contrast to the general,
online learning case, the agent itself is not allowed to interact with the system



during learning. Instead of observing a state s, executing an action a and chang-
ing the policy according to the successor state s′ and reward r, the agent receives
a set B = {(st, at, rt+1, st+1)|t = 1, . . . , b} of transitions (s, a, r, s′) sampled from
the environment. If the model of the environment is known, things get even sim-
pler: Then, only a batch of states B = {st|t = 1, . . . , b} is required before the
agent can start batch-processing the data in a model-based manner.

In a deterministic environment, the basic algorithm of fitted value iteration
(FVI, historically also called smooth value iteration [1]) takes B, a reward func-
tion r : S × A × S → R and a transition function f : S × A → S that provides
the successor state given a current state and action, as well as a regression algo-
rithm as input [2]. After having initialized the value function V and a counter
i to zero, FVI repeatedly processes the following three steps until some stop
criterion becomes true:

1. increment i
2. build up a training set F for the regression algorithm according to:

F := {(int, outt)|t = 1, . . . , b}

where int = st and outt = r(st, a∗, f(st, a∗)) + γV i−1(f(st, a∗)) for a∗ =
argmaxa∈A V i−1(f(st, a))

3. use the regression algorithm and the training set F to induce a new approx-
imation V i : S → R (for example, fit a neural network)

BRL approaches are frequently praised for their data efficiency. In the most
general case, the agent does not make any assumptions on the sampling pro-
cedure of the states/transitions. They may be sampled by an arbitrary – even
purely random – policy, they need not be sampled uniformly from the state or
state-action space, nor along connected trajectories. However, using this limited
information, the agent shall come up with a policy that is to be used for inter-
acting with the environment. In practice, so-called “growing batch” approaches
[8], which steadily increase the data set size by state samples from the current
greedy policy and which somehow lie in the middle between pure batch and pure
online learning approaches – are frequently used to improve learning as they tend
to incentivize the agent to focus more on the relevant regions of the state space.

BRL for Dribbling We modelled the dribble task using a seven-dimensional
state space (ball position and velocity relative to the agent (4d), player veloc-
ity (2d) and angular deviation from target direction (1d)) and a discretization
of the action space using 576 (kick/dash/turn) actions in total. Immediate re-
wards are equated with the agent’s velocity component into the target dribble
direction. Since we have access to a model of state transitions (cf. Section 2.1),
we employed a variant of fitted value iteration using neural network-based value
function approximation (simple four-layered multi-layer perceptron neural nets).
Interestingly, as far as the fitting part is considered, we trained the neural net-
work using Rprop [10] for only five epochs in each FVI iteration, but we refrained
from re-initializing the net in between FVI iterations such that the value func-
tion approximation is going to evolve slowly over the iterations. We employed



a discount factor γ = 0.9. We were interested in the question of data-efficiency
and, to start with, selected varying amounts of randomly chosen states from the
mentioned seven-dimensional state space. As mentioned above, we sticked to a
noise-free environment, leaving learning under stochasticity for future work. We
compared the learned policy to FRA-UNIted’s established dribble behaviors (a
hand-coded one as well as ND17 [3] which has been learned using online RL).

Evaluation Learning using a fixed batch of data, i.e. following a pure batch
approach, and varying the data set size from 2k to 200k training examples,
policies of varying quality can be obtained (cf. Figure 2). In particular, we have to
acknowledge that (a) for small batch sizes no convergent learning behavior can be
observed over the FVI iterations which means that the actual outcome of learning
is subject to high variability, and (b) that the resulting policies do neither match
the quality of our hand-coded dribble policy (which dribbles on average 81.67
metres per 100 time steps in a noise-free environment; 67.17m in a noisy one),
nor the ND17 policy (79.81m noise-free, 74.24m noisy). Using a growing batch
approach that starts out with b = 20k states and where we stopped increasing
the amount of data after having collected 100k states, both reference dribble
policies are surpassed in a noise-free soccer environment (82.41m).

Fig. 2. Opposing Pure Batch and Growing Batch RL for the Dribble Task

Discussion It must be critically noted that quite some complexity of the ex-
plained approach is hidden in its “fitting part”, i.e. in the way the target values
provided by value iteration’s Bellman update, are implanted into the neural net-
work that is utilized as value function approximator. This process, its potential
pitfalls as well as its subtle connection to the main loop of FVI will become the
topic of a separate paper that is currently in preparation.



3 Continuous Integration System with Diversified
Opponents and Dynamic Team Configurations

Since each match of 2D soccer is tainted to various degrees by randomness, the
need to play a large number of matches arises, in order to limit the impact
of chance on the overall results. For this reason, our team has developed and
established the use of a continuous integration (CI) system which we already
presented in an earlier team description paper [5]. Recently, our focus has been
on a further development of this system with the goal of assessing our team’s
performance more reliably. In particular, we have targeted the following issues:

– analysis and reduction of the risk of overfitting, by having CI-based evalua-
tions no longer by playing only against the same team

– no interaction and influence on the CI system besides new commits
– extensions towards using the potential for configuration testing

In [7], we present the details and recent enhancements of the CI system, allowing
the management and usage of arbitrary team binaries, along with the ability to
freely specify configuration values for arbitrary configuration files.

An outlier is defined as a match whose final result and/or course of the match
strongly deviates from expected values. Evaluating outlier detection algorithms
in the context of analyzing soccer simulation games is not trivial. In [7], we
argue that some gold standard must be defined according to subjective beliefs
that assess the data. On this basis, we defined patterns to identify outliers and
trained two different machine learning models, viz local outlier factors and iso-
lation forests, for classifying matches as outliers. Generally, these patterns are
complicated and involve a lot of soccer background knowledge, which is why
they may be improved by incorporating more features in order to score a higher
true negative rate. Therefore, the results of the evaluation presented in [7] can
be considered satisfactory, knowing that almost half of the outliers specified by
the golden standard are successfully detected.

4 On the Impact of Soccer Server Changes: The Case of
the Goalie

Due to two recent changes of the Soccer Server in its version 17 (SSV 17, for short)
a lot of effort had to be invested in our goalkeeper in the last year. Firstly, in
version 17.0 it is no longer possible to perform dashes with a power of −100.
Secondly, the goalkeeper is now restricted to perform a catch command into a
direction that must be within [-90,90] degrees relative to its body orientation,
previously it had been possible for the keeper to also catch balls that were
located behind it. Both of these capabilities were previously used intensively
by our goalkeeper in order to move quickly and efficiently on the goal line and
catch the ball without having to perform turns. As a result, numerous changes
had to be introduced to the goalkeeper’s movement strategy in order make its
behavior competitive again. Using the described CI system (cf. Section 3) and



team Helios 2022, which is adapted to the mentioned changes of the simulation
physics, as reference opponent, we could easily verify and quantify the severeness
of the changes introduced by SSV 17. The FRA-UNIted version, which had been
prepared for SSV 16 and disregards the recent changes in the goalie action model,
achieves an average score of 0.27 : 6.14 against Helios 2022. By contrast, the
extended FRA-UNIted version of 2022, which has been altered to accomodate
the necessary changes, achieves a score of 0.66 : 2.05 in the same setting. Thus,
the goal received-to-scored quotient has been reduced from 22.85 to 3.11.

In addition, we found that, due to the changes, we only get a goal against in
every 5th shot on our goal, instead of every 2nd shot before. As a side effect, while
working on the goalkeeper, other weaknesses could be discovered. For example,
some teams manage to play the ball behind our defensive lines and create a 1vs1
situation against our goalkeeper. At the moment, we are working on a solution
to identify such situations more accurately and safely in order to enable our
goalkeeper for taking better counter measures.

5 Code Maintenance and Redesign of Standard Situations

The FRA-UNIted team has been worked on by numerous students on a voluntary
basis over the last decades. At places, the project was left disorganized in terms of
structure and design. This issue is particularly noticeable in those parts that are
responsible for handling standard situations. Therefore, the StandardSituation
behavior serves as the ideal environment for the incorporation of adaptive so-
lutions in a competitive setting or for the swift implementation of additional
features. Our team’s StandardSituation behavior has been published in [12].
While that version’s implementation for standard situations (URL in footnote1)
comprised 950 lines of C++ code, its contemporary 2022 counterpart has grown
to 2900 lines. In particular, several of the conditional statements used currently
contain rather intricate cases which are difficult to comprehend without a firm
grasp of the underlying code. In an effort to stop the growth of the class and
make it more comprehensive, we are going to restructure and redesign the stan-
dard situation behaviors and classes. This ongoing endeavor is intended to yield
a source code that is easier to maintain due to being more readable and better
structured. The new design of the Standard Situation behavior has thus two
simple goals in mind:

– Improving readability: Write complex conditional statements in separate
boolean functions with self-describing names

– Improving maintainability: Expand the base structure with additional classes
in order to modularize Standard Situation by its core features

Due to the mentioned size of the current StandardSituation behavior it
is nonsensical to recode the entire soccer-playing logic from scratch. Instead
we intend to extract methods into separate classes and modularize complex
conditional statements into separate boolean methods.

1 https://sourceforge.net/projects/bsrelease/, see file bs2k/behaviors/stan-
dard situation.c



6 Conclusion

In this team description paper we have outlined the characteristics of the FRA-
UNIted team participating in RoboCup’s 2D Soccer Simulation League. We have
stressed that this team is a continuation of the former Brainstormers project,
pursuing similar and extended goals in research and development as well as for
teaching purposes. Specifically, we have put emphasis on our most recent research
activities and practical implementation of our results.
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