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We interpret job-shop scheduling problems as sequential decision problems
that are handled by independent learning agents. These agents act completely
decoupled from one another and employ probabilistic dispatching policies for
which we propose a compact representation using a small set of real-valued
parameters. During ongoing learning, the agents adapt these parameters using
policy gradient reinforcement learning, with the aim of improving the perfor-
mance of the joint policy measured in terms of a standard scheduling objective
function. Moreover, we suggest a lightweight communication mechanism that
enhances the agents’ capabilities beyond purely reactive job dispatching. We
evaluate the effectiveness of our learning approach using various deterministic
as well as stochastic job-shop scheduling benchmark problems, demonstrating
that the utilization of policy gradient methods can be effective and beneficial
for scheduling problems.
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1. Introduction

Scheduling and sequencing have emerged as crucial decision-making tasks to support and
enhance the productiveness of manufacturing enterprises as well as logistics and service
providers. The general goal of scheduling is to allocate a limited number of resources
to outstanding tasks over time such that one or several objectives are optimized. Here,
resources and tasks, respectively, depict abstractions of real-world entities that may take
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very different forms depending on the application scenario considered. For example, in
warehousing they may correspond to storages and stored goods, in personell management
to employees and working shifts, in computer program scheduling to CPU cores and
processes, and, most prominently, in manufacturing production control to machines on
a working floor and operation steps of a production process.

As we will show, many scheduling problems suggest a natural formulation as distributed
decision-making tasks. Hence, the employment of learning multi-agent systems represents
an evident approach. Furthermore, given the well-known inherent intricacy of solving
scheduling problems, decentralized approaches for solving them may yield a promising
option.

Distributed problem solving in practice is often characterized by a large number of
involved agents and by a factored system state description where the agents base their
decisions on local observations (Kok 2006). Moreover, in many applications it holds true
that a local action taken by an agent has an influence on only one other agent. This is, for
example, the case for application scenarios from manufacturing, production planning, or
assembly line optimization, where typically the production of a good involves a number
of processing steps that must be performed in a specific order. It is obvious that the
decision to further process a good can only be taken, if all preceding processing steps are
finished, a fact that we shall exploit dedicatedly.

The article at hand focuses in depth on one particular type of scheduling problems,
for which the argument made in the preceding paragraph holds in every respect, namely
job-shop scheduling. In particular, we target stochastic job-shop scheduling problems
where random events, such as delays in the processing of individual operations, compli-
cate the problem setting and impede the application of centralized standard scheduling
algorithms. We emphasize, however, that although the remainder of this article par-
ticularly targets job-shop scheduling problems (JSSPs), the methods and algorithms we
develop may be employed for different multi-agent problems and, thus, for different kinds
of scheduling problems as well. Among those are, for example, single-machine models,
flow-shop problems, and even flexible shop problems (Pinedo 2002).

In contrast to the standard approach to solving scheduling problems, we will not deploy
a centralized authority for finding a good schedule. Instead, we propose a distributed
approach and employ a number of dispatching agents that are entirely independent of
one another. These agents start off with no prior knowledge, but they are assumed to
learn and improve their dispatching behavior over time, i.e. in the course of repeated
interaction with the plant. As a result, these agents, in general, make poor dispatching
decisions initially, but are improving their capabilities continually.

Overview

In what follows, we model the class of scheduling problems we are targeting as sequen-
tial decision problems with the help of decentralized Markov decision processes (DEC-
MDPs, Bernstein et al., 2002). In particular, we utilize the framework of factored DEC-
MDPs with changing action sets and partially ordered transition dependencies (Gabel
and Riedmiller 2008), which turns out to be very useful for modelling scheduling prob-
lems. In so doing, we factorize scheduling problems to handle them in a distributed
manner, attaching simple and independent agents to each of the resources. These agents
employ probabilistic dispatching policies to decide which operations of the jobs waiting
currently at the respective resource should be processed next.

Our core learning approach employs policy gradient (PG) reinforcement learning
(Williams 1992, Sutton et al. 2000) to optimize the agents’ dispatch policies. The basic
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idea of policy gradient RL algorithms is to estimate the gradient of the expected return of
the process. For scheduling tasks with stochastic dispatching policies, where for example
an objective function such as the makespan Cmax shall be optimized, this translates to
an estimate of the gradient of the makespan of the resulting schedule, which is derived
with respect to a set of real-valued policy parameters. These parameters make up the
agents’ stochastic policies and determine their dispatching behavior. To this end, we will
suggest a compact representation of the agents’ local policies. Following the gradient by
adjusting the policy parameters’ values (and assuming the correctness of the gradient
estimate), it is guaranteed that the expected return of the policy is improved, i.e. in
the course of repeated interaction with the plant schedules that are better in terms of
makespan are created with higher probability.

Policy gradient methods are in general guaranteed to converge to at least a local
optimum with respect to the expected return. Given the reactive dispatching behavior
of the agents outlined, however, it is clear that basically only non-delay schedules can
be obtained and, hence, the optimal solution, which eventually may feature necessary
delay times, cannot be found. For these reasons, we also develop a mechanism that
enhances the independently learning agents in such a manner that they become partially
aware of inter-agent dependencies, can resolve them, and thus are enabled to also create
delay schedules. To evaluate our gradient-descent policy search algorithm for scheduling
problems, we make use of various established job-shop scheduling benchmark problems
from the OR Library1 (Beasley 1990). Additionally, we investigate the capabilities of our
learning method for stochastic versions of the problem, where the duration of the jobs’
operations are randomly perturbed. Furthermore, we compare its performance against
a number of alternative reactive solution approaches, i.e. dispatching heuristics, which
are also challenged to making their decisions based on local and, thus, partial problem
knowledge.

In the next section, we start off by summarizing the key characteristics of the sub-
class of DEC-MDPs with changing action sets that builds the foundation of our work.
Subsequently, in Section 3 we motivate a distributed solution approach and show how
job-shop scheduling problems can be modelled within the scope of the DEC-MDP frame-
work. In Section 4, we present in detail our gradient-descent policy search approach for
solving scheduling problems by learning stochastic dispatch policies. Moreover, we sug-
gest a notification-based mechanism for enhancing the capabilities of purely reactively
acting agents, yielding the creation of active schedules from beyond the class of non-
delay schedules (Section 5). The remaining part of this article is devoted to an empirical
evaluation (Section 6) of our approach as well as to related work and conclusion.

2. DEC-MDPs with Changing Action Sets and Partially Ordered

Dependencies

Recently, several researchers have focussed on the task of finding subclasses of DEC-
MDPs that feature provably lower complexity than the general problem which is NEXP-
complete. Among those, there is the class of DEC-MDPs with changing action sets and
partially ordered transition dependencies (Gabel and Riedmiller 2008), where the actions
of an arbitrary number of agents may influence, besides their own, the state transitions
of maximally one other agent. We will show that this class is well-suited for the type of

1OR-Library, http://people.brunel.ac.uk/∼mastjjb/jeb/info.html, last accessed 08/2010
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scheduling problems we are focusing on in this work and we start off by outlining the
basic properties of this class.

2.1. Problem Setting

Decentralized MDPs with changing action sets and partially ordered dependencies build
upon the DEC-MDP framework by Bernstein et al. (2002). A factored m-agent DEC-
MDP M is defined by a tuple 〈Ag, S,A, P,R,Ω, O〉 with

• Ag = {1, . . . ,m} as the set of agents,

• S as the set of world states which can be factored into m components S = S1× ...×Sm

(the Si belong to one of the agents each),

• A = A1×...×Am as the set of joint actions performed by the agents (a = (a1, . . . , am) ∈
A denotes a joint action that is made up of elementary actions ai taken by agent i),

• P as transition function with P (s′|s, a) denoting the probability that the system arrives
at s′ upon executing a in s,

• R as the reward function with R(s, a, s′) denoting the reward for executing a in s and
transitioning to s′,

• Ω = Ω1 × ... × Ωm as the set of all observations of all agents (o = (o1, . . . , om) ∈ Ω
denotes a joint observation with oi as the observation for agent i), and O as the
observation function that determines the probability O(o1, . . . , om|s, a, s′) that agent
1 through m perceive observations o1 through om upon the execution of a in s and
entering s′. Moreover, M is jointly fully observable, i.e. the current state is entirely
determined by the amalgamation of all agents’ observations: if O(o|s, a, s′) > 0, then
Pr(s′|o) = 1.

We refer to the agent-specific components si ∈ Si, ai ∈ Ai and oi ∈ Ωi as the local state,
action, and observation of agent i. A joint policy π is a set of local policies 〈π1, . . . , πm〉
each of which is a mapping from agent i’s sequence of local observations and local actions
to probabilities of executing the respective action, i.e. πi : Ωi×Ai → R. Subsequently, we
allow each agent to fully observe its local state. Being provided with local state informa-
tion only, however, vast parts of the global state are hidden from each of the agents. If, in a
factored m-agent DEC-MDP, the observation each agent sees depends only on its current
and next local state and on its action, then the corresponding DEC-MDP is called obser-
vation independent, i.e. P (oi|s, a, s′, (o1 . . . oi−1, oi+1 . . . om)) = P (oi|s0, si, ai, s

′
i). Then,

in combination with local full observability, the observation-related components Ω and O
are redundant. While the DEC-MDPs of our interest are observation independent, they
are not transition independent. That is, the state transition probabilities of one agent
may very well be influenced by another agent. However, we assume that there are some
regularities that determine the way local actions exert influence on other agents’ states.

An m-agent DEC-MDP with factored state space S = S1 × ... × Sm is said to feature
changing action sets, if the local state of agent i is fully described by the set of actions
currently selectable by that agent (si = Ai \ {α0}) and Ai is a subset of the set of all
available local actions Ai = {α0, αi1 . . . αik}, thus Si = P(Ai \{α0}). Here, α0 represents
a null action that does not change the state and is always in Ai. Subsequently, we
abbreviate Ar

i = Ai \ {α0}.
Concerning state transition dependencies, one can distinguish between dependent and

independent local actions. The former influence an agent’s local state only, the latter
may additionally influence the state transitions of other agents. As noted, our interest is
in non-transition independent scenarios. In particular, we assume that an agent’s local
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state can be affected by an arbitrary number of other agents, but that an agent’s local
action affects the local state of maximally one other agent. So, a factored m-agent DEC-
MDP is said to have partially ordered transition dependencies, if there exist dependency
functions σi for each agent i with

(1) σi : Ar
i → Ag ∪ {∅} and

(2) ∀α ∈ Ar
i the directed dependency graph

Gα = (Ag,E) with E = {(j, σj(α))|j ∈ Ag} (1)

is acyclic and contains one directed path

and it holds

P (s′i|s, (a1 . . . am), (s′1 . . . s′i−1, s
′
i+1 . . . s′m))

= P (s′i|si, ai, {aj ∈ Aj|i = σj(aj), j 6= i}).

The influence exerted on another agent always yields an extension of that agent’s action
set: If σi(α) = j, i takes local action α, and the execution of α has been finished, then α
is added to Aj(sj), while it is removed from Ai(si).

That is, the dependency functions σi indicate the state of which other agent is affected
when agent i takes a local action. Further, condition 2 from above implies that for each
local action α, there is a total ordering of its execution by the agents. While these orders
are total, the global order in which actions are executed is only partially defined by that
definition and subject to the agents’ policies. Gabel and Riedmiller (2008) show that, for
the class of problems considered, any local action may appear only once in an agent’s
action set and, thus, may be executed only once. Further, it is proved that solving a
factored m-agent DEC-MDP with changing action sets and partially ordered transition
dependencies is NP-complete.

3. Job-Shop Scheduling as Decentralized Markov Decision Processes

In job-shop scheduling, a set J of n jobs must be processed on m resources in a pre-
determined order. Each job j consists of νj operations oj,1 . . . oj,νj

. We use function ̺
to denote on which resource a certain operation oj,k must be handled (i.e. on ̺(oj,k)),
and function δ states the duration δ(oj,k) of operation oj,k. A job is finished after its
last operation has been entirely processed (completion time fj). In general, scheduling
objectives to be optimized all relate to the completion time of the jobs. In this article,
we concentrate on the most frequently used scheduling objective, i.e. on the goal of
minimizing maximum makespan (Cmax = maxj{fj}), which corresponds to finishing
processing as quickly as possible. A common characteristic of typical JSS benchmarks
is that usually no recirculation of jobs is allowed, i.e. that each job must be processed
exactly once on each resource (νj = m). For more basics on scheduling, the reader is
referred to Pinedo (2002).

In this section, we argue that reactive scheduling allows for adopting a multi-agent
perspective on scheduling problems. We discuss potential merits of this approach and
show (Section 3.2) that job-shop scheduling problems are well suited to be modelled using
the framework of decentralized Markov decision processes with changing action sets and
partially ordered transition dependencies that we summarized in Section 2. In so doing,
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we provide a motivation and sound foundation for employing multi-agent reinforcement
learning techniques for production management and, particularly, scheduling problems.

3.1. Motivation for Distributed Job-Shop Scheduling

In scheduling theory, a distinction between predictive production scheduling (also called
analytical scheduling or offline-planning) and reactive scheduling (or online control) is
made (Blazewicz et al. 1993). A predictive scheduler assumes complete knowledge over
all tasks to be accomplished, e.g. over entire production floors, tries to take all constraints
into account and aims at finding a globally coherent solution that maximizes an objective
function. By contrast, reactive scheduling can be regarded as an approach to making
local scheduling and dispatching decisions based on a shorter planning horizon and on
less problem knowledge, and as an approach where decisions are taken during execution
(which is why it is sometimes referred to as online production control). In particular, it
allows for a larger degree of independence between the entities involved in the decision
process.

In this article, our focus is explicitly on reactive scheduling. This means, we target
problem settings where we assume that there is no central authority that runs some
scheduling solution algorithm or where such a centralized approach cannot be applied,
but where distributed dispatching agents are utilized. These agents are supposed to
improve their behavior in the course of repeated interaction with the plant. This stands
in clear contrast to traditional scheduling approaches where a fully specified problem
instance is given and solved using a centralized algorithm.

Taking a decentralized approach for production planning is not a new idea: Manu-
facturing environments have for a long time been known to require distributed solution
approaches for finding high-quality solutions, because of their intrinsic complexity and,
possibly, due to an inherent distribution of the tasks involved (Wu et al. 2005). Accord-
ingly, the natural distributed character of multi-agent systems may be exploited in a
purposive manner when addressing scheduling problems. This has led to the applica-
tion of a number of agent-based approaches to resource allocation and scheduling prob-
lems, including market- and auction-based systems, hybrid systems extending standard
scheduling methods by agent techniques, as well as reinforcement learning techniques.

As pointed out, our idea of using a multi-agent system with autonomous dispatching
agents for a scheduling task corresponds to performing reactive scheduling. On the one
hand, this reactive approach may be considered detrimental since, in general, a globally
optimal solution cannot be yielded by doing reactive scheduling. By contrast, predictive
schedulers – benefiting from full knowledge of the entire scheduling problem to be solved
– typically attain the optimum. Moreover, a centralized solution for a given problem in-
stance may be immediately available (after some computation time), whereas the adap-
tive learning-based approach we are pursuing in this article requires a certain amount of
interaction between the learning agents and their environment and, hence, brings about
poor scheduling decisions at the beginning of learning. On the other hand, there are
several advantages of performing reactive scheduling using a multi-agent approach:

• Reactive scheduling features the advantage of being able to react to unforeseen events
(like a machine breakdown or a delay in the finishing of some operation) appropriately
and promptly. By contrast, for a centralized, predictive approach it is necessary to do
complete re-planning given the changed situation.

• Operations Research has, for the better part, focused on predictive scheduling and
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yielded numerous excellent centralized algorithms capable of finding an optimal sched-
ule in reasonable time. This works well for small and medium-sized JSSPs; for larger
problem dimensions, however, computational complexity makes the application of cen-
tralized algorithms infeasible whereas.

• Many resource allocation or scheduling problems are intrinsically distributed in nature,
meaning that there exists no central authority with all the necessary information to
formulate and solve a centralized optimization problem. This is bad, if one wants to
solve such problems centrally. But, this is not the approach we advocate in this article.

We neither interpret the scheduling tasks as centralized optimization problems, nor
do we aim at solving them centrally. Instead, decentralization and independence be-
tween the processing (dispatching) units are core to our approach. Each agent has
access only to a fraction of the full problem specification, thus facing the more intri-
cate, yet practically relevant, challenge of acting under partial system observability.
As it turns out, in the course of learning our agents learn to handle this restriction
and to jointly make sophisticated dispatching decisions.

• From a practical point of view, a centralized control cannot always be instantiated,
which is why a decentralized problem interpretation using a multi-agent system, that
we are going to adopt, may sometimes also be of higher impact to real-world applica-
tions.

• By combining partial solutions as provided by the agents involved for the local dis-
patching problems they are facing, it may be feasible to find a more efficient solution
for the global problem. Although, in this way, generally only sub-optimal results will
be obtained – as job-shop scheduling problems are known to be tightly interacting and
non-decomposable (Liu and Sycara 1997) – that kind of divide and conquer strategy
may be of higher efficiency.

• Further advantages that can be claimed for taking a multi-agent approach to (practical)
manufacturing and scheduling problems include increased flexibility, reduced costs,
fault tolerance, and the fact that multi-agent systems may facilitate humans and agent-
based machinery to work together as colleagues.

Baker (1998) surveys in detail the utility of multi-agent systems for factory control,
resource allocation, and scheduling problems. While this author names various different
ways for utilizing agents for distributed production control (e.g. for deciding what and
how much to produce, or when to release jobs into a factory), we subsequently focus
on their use for deciding upon job routing and operation sequencing. In so doing, we
associate to each of the m resources an agent i that locally decides which operation
to process next. How this idea relates to DEC-MDPs with changing action sets is the
subject of the next section.

3.2. Job-Shop Scheduling as DEC-MDPs with Changing Action Sets

Job-shop scheduling problems are well suited to be modelled using factored m-agent
DEC-MDPs with changing action sets and partially ordered transition dependencies.
We reinforce this claim by showing how the components of a JSSP can be employed to
construct a corresponding DEC-MDP.

• Factored World State: The world state of a job-shop scheduling problem can be fac-
tored: We assume that to each of the resources one agent i is associated that observes
the local state at its resource and controls its behavior. Consequently, we have as many
agents as resources in the JSSP (|Ag| = m).
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• Local Full Observability: The local state si of agent i, hence the situation at its resource,
is fully observable (thus, local observations and local states are identical). Additionally,
the amalgamation of local observations at all resources fully determines the global state
of the scheduling problem. Therefore, the system is jointly observable, i.e. it is a DEC-
MDP (cf. Section 2.1).

• Factored Actions: Actions correspond to the starting of jobs’ operations (job dispatch-
ing). So, a local action of agent i reflects the decision to further process one particular
job (more precisely, the next operation of that job) out of the set of jobs currently
waiting at i.

• Changing Action Sets: If actions denote the dispatching of waiting jobs for further
processing, then, apparently, the set of actions available to an agent varies over time,
since the set of jobs waiting at a resource changes. While Ai ⊆ A

r
i denotes1 the

currently available actions for agent i, Ar
i is the set of all potentially executable actions

for this agent. Hence, Ar
i corresponds to the set of jobs j that contain an operation

oj,k which must be processed on resource ri, i.e. ̺(oj,k) = i. Accordingly, it holds

Ar = ∪m
i=1A

r
i = J . (2)

Furthermore, the local state si of agent i is fully described by the changing set of
jobs currently waiting for further processing at the resource to which i belongs. Thus,
si = Ai and Si = P(Ar

i ), as required by the definition of DEC-MDPs with changing
action sets.

• Transition Dependencies: DEC-MDPs with changing action sets and partially ordered
transition dependencies feature some structure according to which the agents’ local
actions may exert influence on the local states of other agents. After having finished
an operation of a job, this job is transferred to another resource, which corresponds to
influencing another agent’s local state by extending that agent’s action set.

• Dependency Functions: The order of resources on which a job’s operations must be
processed in a JSSP is given a priori. These orders imply that, upon executing a local
action by processing a job’s next operation, the local state of maximally one further
agent is influenced. Let α ∈ Ai (and so α ∈ J ) be the job whose current operation oα,k

is processed by resource i. Then, after having finished oα,k, the action set Ai of agent
i is adapted according to Ai := Ai \{α}, whereas the action set of agent i′ = ̺(oα,k+1)
is extended (Ai′ := Ai′ ∪ {α}).

Therefore, we can define the dependency functions σi : Ar
i → Ag ∪ {∅} (cf. Section

2.1) for all agents i (and resources, respectively) as

σi(α) =

{

̺(oα,k+1) if ∃k ∈ {1, . . . , να − 1} : ̺(oα,k) = i

∅ else
(3)

where k corresponds to the number of that operation within job α that has to be
processed on resource i, i.e. k such that ̺(oα,k) = i.

• Dependency Graphs: Given the no recirculation property (beginning of Section 3) and
the definition of σi (Equation 3), the directed graph Gα from Equation 1 is indeed
acyclic and contains only one directed path. The corresponding proof is provided by
Gabel (2009). For job-shop scheduling problems with recirculation the definition of Gα

1Recall that Ar

i
= Ai \ {α0} where α0 represents an idle action.
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must be slightly extended; this depicts a rather technical change and is beyond our
scope.

Obviously, the ensemble of agents interacting with the DEC-MDP corresponding to
a JSSP have to strive for the same goal, namely for optimizing the objective function
of the scheduling problem. Consequently, a crucial precondition to enable the agents to
learn to make sophisticated dispatching decisions is that the global reward function of the
DEC-MDP coincides with the overall objective of scheduling. As indicated at the start
of Section 3, in this work our scheduling objective is to minimize the makespan Cmax of
the resulting schedule. Therefore, the DEC-MDP’s reward function can be brought into
alignment with the scheduling objective, if negative rewards are incurred for every time
step the processing has not been finished, yet.

4. Policy Gradient Methods for Scheduling

Policy gradient algorithms have established themselves as the main alternative RL ap-
proach besides value function-based RL methods. Omitting the need to enumerate states
and being well applicable to multi-agent settings, PG methods represent a natural option
for solving decentralized MDPs with changing action sets and, thus, for tackling job-shop
scheduling problems that are modelled using that framework. We emphasize that the pol-
icy optimization approach for scheduling problems, that we are going to present in the
following, is a natural fit for situations were the scheduling task is subject to random
perturbations and has to be processed repeatedly. It is also applicable for determinis-
tic scheduling problems, although, the aspect of online adaptation with respect to the
processing fluctuations is less relevant, if the scheduling problem at hand is deterministic.

4.1. Compact Policy Representation

We assume that each resource is equipped with a learning agent i whose policy is com-
pactly represented by a small set of parameters θi = (θi

1, . . . , θ
i
n) where all θi

j ∈ R. In
particular, we presume that there is exactly one parameter for each action from Ar

i ,
i.e. for each job the agent can execute. As a shortcut, we refer to the parameter be-
longing to α ∈ Ar

i by θi
α. Accordingly, for a m × n JSSP (with no recirculation and m

operations in each job), we have m agents with n policy parameters, thus a total of mn
parameters to fully describe the agents’ joint policy.

These parameters form the basis for defining probabilistic agent-specific (dispatching)
policies of action. The use of probabilistic policies is essential, if we want to employ a
policy gradient learning method, where we will be required to form the derivative of
the policy’s performance with respect to its parameters. In order to properly calculate
or estimate the gradient, variability in the policy’s action choice is necessary (Williams
1992).

Let si ⊆ A
r
i be the current state of agent i where, as explained before, si is the

set containing all operations currently waiting for further processing at resource i. The
probability of action Pr(α|si, θ

i) = πi(α, si|θ
i) for policy πi is for all actions α ∈ Ar

i
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defined according to the Gibbs distribution,

πi(α, si|θ
i) =







e−θi
α

P

x∈si
e−θi

x
if α ∈ si

0 else
(4)

so that actions that are currently not available have zero probability of being exe-
cuted. With respect to scheduling, this probabilistic action selection scheme represents a
stochastic and reactive dispatching policy that, when applied, yields the creation of non-
delay schedules. Every time si 6= ∅, some action α ∈ Ar

i is being executed, i.e. a resource
never remains idle when jobs are waiting for further processing. As a consequence, all
stochastic policies (for any values of θi) reach the terminal state sf = (s1, . . . , sm) where
all jobs have been finished and, hence, for all i it holds that si = ∅. Later (cf. Section 5),
we relax the restriction of acting purely reactively in order to be able to create schedules
from beyond the class of non-delay schedules, too.

4.2. Gradient-Descent Policy Learning

The general idea of policy optimization in RL is to optimize the policy parameter vector1

θ such that the expected return

J(θ) = Eθ

[

T
∑

t=0

γtr(t)

]

(5)

is maximized. The sequence of states encountered and actions taken in between is
called an episode, which ends after T time steps, when having reached the terminal state
sf . The weighting factor γt is time-step dependent and uses γ from [0, 1].

For JSSPs, the notion of an episode translates to the dispatching and execution of all
jobs’ operations until all jobs have entirely been processed. The expected return corre-
sponds to the general objective of scheduling. Since our goal is to minimize Cmax(θ), the
expected return can be expressed by providing the learning agents with a summed re-
turn of −Cmax when an episode ends (and with a zero reward otherwise). Equivalently, a
constant immediate reward of r(t) = −1 may be conveyed to the agents per time step or,
also equivalent, if the previous action lasted for several time steps, the cumulation of im-
mediate rewards from the previous decision stage d−1 to the current one d. Furthermore,
since a finite horizon is guaranteed (i.e. sf is reached regardless of the values of θ) and,
thus, no discounting is necessary (γ = 1), the goal of policy optimization using policy
gradient RL for scheduling problems means to optimize θ such that J(θ) = E [−Cmax(θ)]
is maximized.

Note, that the sequence of states and actions within a scheduling episode in general
differs from the sequence of states and actions in a second episode for two reasons: First,
the agents’ dispatching decisions do not necessarily have to be deterministic. Stochastic
dispatch policies may be allowed and, in fact, during learning we are employing such
non-deterministic policies (cf. Equation 4). Second, we consider stochastic JSSPs where
the durations of single operations may be randomly perturbed, operations thus become
available at different times and, hence, different processing orders arise.

1For ease of notation, we drop the agent-specific index i when speaking about an agent’s policy parameters θi.
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Algorithm 1: Decentralized Policy Search from the Perspective of Agent i

Input: policy πi initialized randomly by equally-valued parameters θi

1: t← 0, hi ← [ ] //counter and (empty) sequence of states and actions
2: while not stop do

3: observe si(t) //current state
4: if si(t) 6= ∅ or si(t) = sf then

5: if t > 0 then

6: receive global immediate reward r(t− 1) //r(s(t-1),a(t-1),s(t))
7: append [si(t− 1), α(t − 1), r(t− 1)] to hi

8: endif

9: if si(t) = sf then //episode finished
10: call PolicyUpdate(hi)

11: t← 0, hi ← [ ]
12: else

13: select α(t) ∈ si(t) with probability given by πi

14: execute α(t)
15: sσi(α(t)) ← sσi(α(t)) ∪ {α(t)} //influence local state of agent σi(α(t))
16: si(t)← si(t) \ {α(t)} //job’s operation processed
17: t← t + 1
18: endif

19: endif

4.2.1. Algorithm Outline: The Big Picture

The core idea of policy search-based RL is to directly adapt the policy to be learned
with respect to its performance. Besides, the key point of cooperative, distributed multi-
agent learning is to have independent agents that try to improve their local policies
with respect to a common goal. Algorithm 1 reflects both of these points. It provides
a straightforward implementation of a procedure that is tailored for policy search RL
and it lets a single agent interact with the environment (in our case, with a DEC-MDP
corresponding to a scheduling plant) and improve its policy independently. Note that
this algorithm is to be executed in parallel and independently by each agent involved;
we here describe it from a single agent’s perspective only.

Until some external stop signal indicates the end of the entire learning process, agent i
alternates between observing its local state (i.e. not the full global system state), choosing
actions, and obtaining global immediate rewards. On the occasion of having finished a
single episode, as indicated by having entered the terminal state sf , the agent calls a
policy update algorithm (line 10) whose task is to purposively process the experience
collected during the recent episode. In the following subsection we develop and analyze
a gradient descent variant of such an update algorithm. Thus, Algorithm 1 realizes a
rather generic procedure for performing policy search-based reinforcement learning using
decentralized control. Basically, it realizes the interaction of a single agent (agent i) with
the DEC-MDP with changing action sets at hand and delegates the task of learning to
the respective policy update method. External to this algorithm there is, of course, the
environment which repeatedly restarts the scheduling process after the terminal state
has been reached, initiating the next scheduling episode.
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We note that variable t in Algorithm 1 does not necessarily have to correspond to time
steps, but merely represents a counter of decision stages experienced by agent i. Thus,
this algorithm is capable of handling environments with temporally extended actions,
i.e. where the execution of a local action α lasts longer than one time step, such as
scheduling problems where a single operation generally lasts more than one time step.
For this to happen, the execution of α in line 14 would correspond to a blocking function
call and the global reward to be received (line 6) must be a collection of time step-based
rewards accrued during the execution of α. In lines 15 and 16 the action sets of agent i
and, possibly, of a dependent agent are changed as denoted by the dependency functions
defined in Section 2.1.

4.2.2. Gradient Estimation

Policy gradient methods follow the steepest descent on the expected return. This re-
quires that the expected return J(θ) must be differentiable with respect to the action
parameter θα for each α ∈ Ar

i . In our case, each agent must form the derivative of the
(negated) makespan with respect to its parameter vector θi (again, for better readability
we drop index i in the following). It holds

∇θα
J(θ) = ∇θα

Eθ

[

T
∑

t=0

γtr(t)

]

= ∇θα
Eθ [−Cmax(θ)]

= ∇θα

∫

e∈E
Pr(e|θ)(−Cmax(e))de

= Eθ [−Cmax(e)∇θα
ln Pr(e|θ)] (6)

where e refers to an individual scheduling episode with makespan Cmax(e) and e is gen-
erated, using current policy parameters θ, with probability Pr(e|θ) from the space E of
all possible episodes. Practically, the evaluation of the term Pr(e|θ) is infeasible. There-
fore, it is crucial that ∇θα

ln Pr(e|θ) in Equation 6 can be calculated without knowing

Pr(e|θ), because Pr(e|θ) =
∏T

t=0 p(si(t + 1)|si(t), α(t))πi(α(t), si(t)). When forming the
log derivative of this term (Peshkin et al. 2000), we obtain

∇θα
lnPr(e|θ) =

T
∑

t=0

∇θα
ln πi(α(t), si(t)|θ). (7)

In order for Equation 7 to be computable efficiently, πi(α(t), si(t)|θ) must be differen-
tiable with respect to each action parameter θα as well. For the compact representation of
probabilistic scheduling policies with action probabilities calculated according to Equa-
tion 4, this naturally holds true because

∇θα
ln πi(α(t), si(t)|θ) =

{

1− πi(α(t), si(t)|θ) if α = α(t)

−πi(α(t), si(t)|θ) else
. (8)

An exact computation of the gradient ∇θJ(θ), which would involve the evaluation of
the integral term in Equation 6, becomes quickly intractable as the problem size grows.
Therefore, we make use of Monte-Carlo estimates of the gradient similar to related work
(Williams 1992, Sutton et al. 2000). These estimates are generated from a fixed number
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E of scheduling episodes. Practically, this means that procedure PolicyUpdate(hi) in
Algorithm 1 returns without doing any modifications to the policy parameters, if less
than E episodes were experienced under the current policies πi. After having collected
E episodes, however, the gradient estimate is calculated based on this batch of episodic
experience and the function call to PolicyUpdate(hi) makes changes to the parameter
vectors θ which determines the agent’s policy.

For the latter, we use the average performance J̄(θ) = 1
E

∑E
k=1−Cmax(ek) (average

makespan) as a simple baseline to reduce the variance of the gradient estimate (a tech-
nique proposed by Greensmith et al. (2004)). By replacing the integral by a sum over
E episodes and by shifting the makespan of episode ek by the value of the baseline
(i.e. −Cmax(ek) − J̄(θ)), we arrive at the following expression for component α of the
policy parameter gradient estimate

gα = ∇θα
J(θ) =

1

E

E
∑

k=1

(

(

−Cmax(ek)− J̄(θ)
)

·
Tk
∑

t=0

∇θα
ln πi(α(t), si(t)|θ)

)

. (9)

4.2.3. Updating the Policy

Given a gradient estimate gα determined according to Equation 9, an update of the
agents’ scheduling policy parameters uses the standard rule

θi
α := θi

α + βugα (10)

where βu ∈ R+ denotes a learning rate. If u ∈ N counts the number of policy updates
made and

∑

u βu = ∞,
∑

u β2
u = const, then the learning process is guaranteed to

converge to a local optimum, at least. The PG update scheme outlined resembles the
episodic Reinforce gradient estimator (Williams 1992). For various applications, the fact
that this algorithm estimates the gradient for a dedicated recurrent state, is problematic.
Hence, other algorithms, such as GPOMDP (Baxter and Bartlett 1999) or the natural
actor critic NAC (Peters et al. 2005), were suggested that overcome the need of identifying
a specific recurrent state at the cost of introducing a bias to the gradient estimate and
trading this off against reducing variance. Because, such a recurrent state (starting state)
is naturally available for the episodic interpretation of scheduling problems we consider,
we keep with doing the gradient calculation using the likelihood ratio method described
above.

We note that, in our factored DEC-MDP setting all agents attached to the resources
act and perform gradient-based policy updates independently. As shown by Peshkin et al.
(2000), these factored updates made to the agents’ policy parameters lead to the same
optimum with respect to the performance of the joint policy, as if they were done by a
centralized controller. For more details on this and the corresponding proof see Gabel
(2009).

5. Inter-Agent Notifications for Delay Schedules

An obvious shortcoming of the approach presented arises from the fact that each agent
behaves in a reactive manner. For scheduling tasks, this means that any resource imme-
diately starts the next operation of a waiting job, if the set of waiting jobs is currently
not empty (si = ∅). Hence, the group of agents attached to the resources may yield the
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creation on non-delay schedules only, although it is well-known that the optimal schedule
may very well be a delay one.

From an agent-theoretic point of view, we may say that we deliberately employ in-
dependent agents with partial state information, which do not obtain any information
related to other agents or concerning state transition dependencies at all. Consequently,
they face particular difficulties in assessing the value of their idle action α0. Specifically,
they are incapable of properly distinguishing when it is favorable to remain idle, in spite
of si 6= ∅, and when not.

Aiming at the creation of active schedules from beyond the class of non-delay schedules
and, hence, demanding i not to behave purely reactively, we have to redefine its local
stochastic policy πi : Ar

i×Si (cf. Equation 4) so as to not select actions from si ⊆ A
r
i only,

but to facilitate the execution of the idle action α0 as well. To this end, we assume that
the execution of α0 lasts until si is being changed due to the influence of other agents,
i.e. until agent i’s action set is extended. Apparently, such an approach can easily result
in deadlock situations in which all resources remain idle, waiting for new jobs to come
in and where, thus, the terminal state sf is never reached. Therefore, we need to impose
some restrictions on the probability of executing α0. For these reasons, next we enhance
the learning agents towards being able to resolve some of their inter-agent dependencies.

5.1. Resolving State Transition Dependencies

The probability that agent i’s local state moves to s′i depends on three factors: On that
agent’s local state si, on its current action ai, as well as on the set ∆i := {aj ∈ Aj|i =
σj(ai), i 6= j}, i.e. on the local actions taken by agents that may influence agent i’s local
state transition. Theoretically, if each agent knew the contents of ∆i all the time, then
all state transition dependencies would be resolved, meaning that all local transitions
would be Markovian and that local states would represent a sufficient statistic for each
agent to behave optimally. Obviously, advertising ∆i to all agents conflicts with the idea
of intentionally using independent agents that partially observe the global state and act
independently of one another.

So, for a distributed approach, knowing ∆i in general is neither desired nor feasible.
Nevertheless, we may increase the capabilities of a reactive agent by allowing it to get at
least some partial knowledge about ∆i. For this, we extend a reactive agent’s local state
from Si = P(Ai) to Ŝi such that for all ŝi ∈ Ŝi it holds ŝi = (si, zi) with zi ∈ P(Ar

i \ si).
So, zi is a subset of actions currently not in the action set of agent i (si ∩ zi = ∅). Given
these preconditions, we can define the resolving of a transition dependency between
agents i and j: If agent j decides for executing aj ∈ Aj(sj) and σj(aj) = i, and if si is
the local state of agent i and its extended local state ŝi = (si, zi) as described before,
then the transition dependency between i and j is said to be resolved, if we enable agent
i to add {aj} to zi. This mechanism of resolving a transition dependency corresponds
to letting agent i know (at least some of) those current local actions of other agents by
which the local state of i will soon be influenced.

5.2. Non-Reactive Policies

Because, for the class of DEC-MDPs we are dealing with, inter-agent interferences are
always exerted by changing (extending) another agent’s action set, agent i gets to know
which further action(s) will soon be available in Ai(si) when a dependency is resolved.
By integrating this piece of information into i’s extended local state description ŝi, this
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agent obtains the opportunity to willingly stay idle (execute α0) until si is changed,
which happens when an announced action aj ∈ zi enters its action set si and can finally
be executed. We redefine agent i’s stochastic local policy as

πi(α, ŝi|θ
i) =







e−θi
α

P

x∈si
e−θi

x+
P

x∈zi
e−θi

x
if α ∈ si ∪ zi

0 else
(11)

for all α ∈ Ar
i and extended local states ŝi = (si, zi) ∈ Ŝi. If, however, an element

α ∈ zi is selected during execution given the probabilities defined by π, then in fact
agent i remains idle, i.e. it executes α0, until α enters its local state si, and after this
immediately continues to process α.
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Figure 1. a) Agent 5 behaves purely reactively. b) A notification from agent 2 allows for resolving
a dependency, agent 5 may stay willingly idle and the deadline for finishing α4 is met.

The notification of agent i, which instructs it to extend its local state component zi

by aj , may easily be realized by a simple message passing scheme (assuming cost-free
communication between agents) that allows agent i to send a single directed message
to agent σi(α) upon the local execution of α. A simple example for this mechanism is
illustrated in Figure 1 where agent 2 notifies agent 5 about having started the execution
of a dependent action, which in turn facilitates agent 5 to remain idle and finally meet all
deadlines1. Generalizing this example, we can say that policies defined over Ai × Ŝi are
normally more capable than purely reactive ones, because local states ŝi are extended by
information relating to transition dependencies between agents and, hence, at least some
information about future local state transitions induced by teammates can be regarded
during decision-making.

1In this myopic example, action α4 is assumed to be the last operation of a job whose deadline is at the time
denoted in Figure 1.
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6. Empirical Evaluation

Imagine a distributed production scenario where, on every day, a number of products
must be manufactured across different production sites, each one involving a specific
number of processing steps. Although the number of jobs and the processing steps in-
volved as well as the number and characteristics of the processing machines may be
known, the calculation and establishment of a fixed schedule may be problematic. On
each day, different disturbances and delays may occur in the production process. Under
these circumstances, a predictive scheduling approach would be required to (a) collect
regularly the updated information about all recent and unforeseen changes in the pro-
duction process at all resources, to (b) calculate a new schedule in real time, and to (c)
communicate it to all local dispatchers. In Section 3.1, we have discussed that any of
these three requirements may be unaccomplishable in a practical application, for exam-
ple, due to the infeasibility of solving the changed scheduling problem in real time, or due
to limited communication bandwidth or communication delays between the distributed
production sites. Then, it is up to the local decision makers to autonomously make ap-
propriate dispatching decisions, given only information about the current situation at
the respective local resource.

In this section, we are going to evaluate the performance of our policy gradient-based
learning approach in the context of a scenario like the one delineated. In so doing, we
take a two stage approach.

Scenario I: First, we employ our gradient-descent policy search approach to a selec-
tion of standard job-shop scheduling benchmark problems from the OR Library, ranging
from scenarios with 5 resources and 10 jobs to 15 resources and 30 jobs. These problem
instances are, by default, deterministic. Therefore, for those deterministic instances, a
classical centralized solution algorithm might be applied and would, in most cases, find
the optimal schedule. As a consequence, the application of our multi-agent RL approach
is indeed feasible, but does not yield a gain compared to a centralized approach. Never-
theless, these experiments serve as a proof of concept and show the principal functioning
of our policy gradient learning approach.

In particular, it should be noted that, despite the determinism, the learning agents
face a significant challenge as they are provided with local state information only and,
hence, lack full knowledge over the entire scheduling problem. Logically, as far as this set
of experiments is considered, we compare the performance of the policy gradient-based
learning agents only against the theoretical optimum. We did not include a selection of
instances of analytical solution methods that aim at solving a job-shop scheduling prob-
lem in a centralized manner (like meta-heuristic search procedures such as beam search
(Ow and Morton 1988) or genetic algorithms) because these work under superior precon-
ditions compared to local dispatchers. Instead, we subsume such methods by indicating
their upper limit, viz by denoting the theoretically optimal solutions of the respective
benchmark instances.

Scenario II: In a second series of experiments, we focus on the task set-up for which
our decentralized RL approach is primarily intended. As pointed out before, the agents
attached to the resources are required to adapt their dispatching behavior over time with
respect to the specifics of the scheduling plant. In so doing, they ought to become capable
of appropriately reacting to unforeseen events and changes in the processing of the jobs.



September 10, 2010 11:21 International Journal of Production Research IJPR09Main

International Journal of Production Research 17

Starting with no prior knowledge and, therefore, dispatching all waiting jobs with iden-
tical probability initially, the dispatching agents interact with a scheduling environment
like the one described at the beginning of this section. More specifically, we also utilize
benchmark problems from the OR Library, but modify them in such a manner that a
substantial amount of stochasticity is introduced. By repeatedly dispatching the jobs
within these stochastic JSSPs, the agents collect experience and improve their behavior
over time using the policy gradient reinforcement learning algorithm presented in Section
4. Still, they act and learn under partial state information.

Due to the reactivity of our approach and due to the restriction to making decisions
given local observations only, the performance of our distributed learning dispatching
agents must be compared most naturally against dispatching priority rules (DPR). DPRs
also perform reactive scheduling and consider only the local situation at the resource for
which they make a dispatching decision. However, they are not adaptive and cannot
account very well for random fluctuations in the processing.

6.1. General Experiment Settings

Given a specific m× n job-shop scheduling benchmark instance, we initialize all agents’
policies by θi

α = 0 for all i ∈ {1, . . . ,m} and all α ∈ Ar
i such that initially the agents

dispatch all waiting jobs with equal probability (such a purely random policy, hence,
represents a baseline). Throughout all our experiments, we allow the agents to update
their local policies umax = 2500 times, where we use a constant learning rate βu = 0.01
(cf. Equation 10) that has been settled empirically. Any update to the policy parameters
is made after E = 100 scheduling episodes have been processed, using the estimate gα =
∇θi

α
J(θi) of the gradient (Equation 9). The schedule that arises, when each agent always

picks those jobs that have highest action probabilities according to its local dispatching
policy πi, is called maximum likelihood schedule (MLS) of a joint policy π(θ).

In the context of learning scenario I with deterministic job-shop scheduling problems,
where we want to verify that the learners are in principle capable of minimizing maximum
makespan, we focus on three different evaluation criteria.

• First, we are interested in the makespan Cbest
max of the best schedule that has been

produced occasionally by the set of probabilistic policies during ongoing learning.
Clearly, this value is only of minor relevance for evaluating the learning method

since it has been achieved by incident. Nevertheless, it hints at what results might be
achieved in the further course of learning.

• Second, we are interested in the value of the makespan Cmls
max of the maximum likelihood

schedule that arises when all of the agents select jobs greedily, i.e. choose the action
arg maxα∈Ar

i
πi(α, si|θ

i), at all decision points.
Clearly, this value is of major relevance for evaluating the learning method because

this is also the makespan that would be achieved by the agents, if the learning pro-
cesses was stopped at that moment and all agents were made to select their actions
greedily (and, hence, deterministically), when applying their current policies for the
deterministic JSSP at hand.

• Our third concern is the convergence behavior and speed of the algorithm. By conver-
gence we here refer to the case that for all agents’ policies and for all states si there
is an α ∈ si such that πi(α, si|θ

i) > 1− ε for some small ε > 0, which implies that the
agent’s probabilistic policy has approached a nearly deterministic one. This indicates
that the agents have finally learned what are the specifics of the respective plant and
which are the best actions to be executed in any state. To this end, the best case
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arises when there is a u⋆ such that for all policy update steps u with u > u⋆ it holds
that Cbest

max = Cmls
max. However, it may also happen that Cmls

max converges to another local
optimum of a value worse than Cbest

max (Cmls
max 
 Cbest

max).

Regarding the use of limited inter-agent communication in order to overcome the
agents’ limitation of being capable of generating non-delay schedules only, it must be
acknowledged that this enhancement brings about an aggravation of the learning prob-
lem. Since it holds |Ŝi| ≫ |Si|, the agents must handle a clearly increased number of local
states. Also, the number of actions to be considered in each extended state is equal or
larger than in its non-extended counterpart si. In order to be able to trade off between
the goal of learning policies superior to reactive policies and the rising of the difficulty
of the learning task, we introduce an additional parameter dmax≥0 that stands for the
maximal number of time steps an agent is allowed to remain idle. Given the current local
state ŝi(t) = (si(t), zi(t)), agent i is allowed to execute an α ∈ zi (by executing α0 in
fact) only, if the notification regarding α has announced that α enters si after maximally
dmax time steps, i.e. if ∃τ > t : α ∈ si(τ) and τ − t≤ dmax. This restriction can easily
be realized by adapting the first case of Equation 11 appropriately. Thus, when setting
dmax =0, we again arrive at purely reactive agents, which can generate non-delay sched-
ules only, whereas for dmax ≥ maxx∈A δ(x) (with δ denoting the operations’ durations)
the communication-based resolving of transition dependencies is fully activated. For the
experiments whose results we report in the next sections, we either made use of purely
reactive agents (dmax =0) or used a value of dmax =20.

In the context of learning scenario II with stochastic job-shop scheduling problems, we
analyze the capabilities of our adaptive agents in adapting their dispatch behavior with
respect to the intrinsic stochasticity of the scheduling plant. In so doing, we perturb the
processing times of all operations randomly during execution.

As before, the learning agents start with no prior knowledge and select all waiting
jobs with equal probability for further processing, thus implementing a purely random
dispatch policy at the beginning. Accordingly, random dispatching represents the base-
line against which the performance of the adaptive agents must be compared, and the
corresponding question we would like to be answered is whether the learning agents are
capable of improving their behavior over this random dispatching behavior. Moreover, we
consider a selection of dispatching priority rules. These rules perform reactive schedul-
ing as well and they also make their decisions which job to process next based solely
on their local view on the respective resource. Subsequently, we consider five instances
of this group: The LPT/SPT rules choose operations with longest/shortest processing
times first, the FIFO (first in first out) rule considers how long operations had to wait at
some resource. The RANDOM rule picks one of the waiting jobs randomly and, hence,
is identical to the behavior of the adaptive agents at the beginning of learning. Finally,
the SQNO (shortest queue next operation) rule obtains more than just local state in-
formation: It is allowed to consider how long are the waiting queues at other resources
and selects that job whose next operation must be processed on the resource with the
least number of jobs waiting. While all these dispatching priority rules are static, the
dispatching policies of the learning agents are not. Hence, the next interesting question to
be answered is whether our policy gradient learning approach yields dispatching policies
that are superior to the results that DPRs achieve.

In reporting the learning curves and final performance achieved by the learning agents
we always refer to the expected makespan they achieve when they act greedily, i.e. when
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they, in any state, pick those jobs with the highest action probabilities given their current
stochastic policy π(θ). Hence, during learning the learners choose their actions proba-
bilistically according to Equation 4, but when evaluating their performance for some
stochastic JSSP, each agent executes the action with maximal probability (which corre-
sponds to the creation of a maximum likelihood schedule as explained at the beginning
of this section), i.e. in state si the action

arg max
α∈Ar

i

πi(α, si|θ
i)

is selected.
Finally, we also investigate the influence of using limited inter-agent communication in

the scope of stochastic job-shop scheduling benchmarks. To this end, we make use of the
same setting as in the context of scenario I (see above), i.e. we compare purely reactively
dispatching agents (dmax = 0) and communicating agents that are allowed to remain idle
for some time (dmax = 20) and, thus, are capable of creating delay schedules.

6.2. Experiment Results: Scenario I

We start the analysis of the behavior of our decentralized learning algorithm by focusing
on the FT10 benchmark problem. After that, we broaden the scope by considering an
entire suite of problem instances.
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Figure 2. Policy parameters θ2 of agent 2 during ongoing learning for the FT10 benchmark.

6.2.1. Example Problem

Figure 2 provides an exemplary visualization of what is happening within agent 2
during learning for the deterministic FT10 benchmark. Here, the agents are disallowed
to communicate. The dashed lines (secondary ordinate) show the development of policy
parameters θ2

1 through θ2
10 subject to the number of policy updates. Also shown (primary

ordinate) are the expected makespan E[Cmax(θ)] of the joint dispatching policy, which
of course depends on the other agents’ local policies (and, thus, on their 9 · 10 policy
parameters) to a large extent, as well as the makespan Cmls

max of the maximum likelihood
schedule (solid lines). Apparently, the latter two curves are approaching each other which
indicates that πθ is converging towards a deterministic policy. Policy gradient learning
methods in general guarantee the achievement of a local optimum. Therefore, as to be
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expected, the learners converge to a local optimum only, i.e. the global optimum (best
schedule with a makespan of Copt

max = 930) is not attained.
The overall learning results for the FT10 benchmark can be read from Figure 3 (log

scale abscissa). Besides Cmls
max, here also the makespan of the best schedule encountered

intermediately (Cbest
max = 964) is shown, and the relation to the starting point of learning

(initial, random policies with average makespan of Cinit
max = 1229) and to the theoretical

optimum (Copt
max = 930) is highlighted. Additionally, the corresponding Cmls

max and Cbest
max

curves for communicating agents with dmax = 20 are drawn which obviously outperform
purely reactive agents, but require more learning time to achieve that result. The remain-
ing percentual error of the acquired joint policy (converged to the maximum likelihood
policy with Cmls

max = 993 after u⋆ = 429 updates) relative to the optimum is thus 6.8%.
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Figure 3. PG learning progress for FT10, opposed for purely reactive and communicating agents.

6.2.2. Benchmark Suites

Table 1 summarizes the learning results for a set of different benchmarks averaged
over problems of different m × n sizes. In any case, the starting point of learning is
represented by the initial, random dispatching policy (all θi

j = 0) whose relative error

er = 100% · (Cinit
max/Copt

max − 1) is typically in the range of 20-30%. Starting from this
baseline, the error values eb = 100% · (Cbest

max/Copt
max−1) for the best intermediate schedule

found as well as em = 100% · (Cmls
max/Copt

max − 1) for the maximum likelihood schedule
(obtained after umax policy updates) can be decreased significantly.

As can be read from the table, the theoretical optimum is achieved (e = 0%) only
occasionally which is to be expected since the PG learning algorithm in general converges
to a local optimum. The time to arrive at that local optimum is given by the average
number u⋆ of policy updates necessary until Cmls

max does not change any further. In some
cases convergence could not be obtained within umax updates which is denoted by a ’-’ in
Table 1 (in brackets: number of problem instances for which convergence was attained).
Apparently, the problem aggravation introduced by setting dmax > 0 brings about a clear
reduction of the learning speed, but superior performance (numbers in bold).

6.3. Experiment Results: Scenario II

In what follows, we leave the deterministic setting and allow for sudden, unexpected
changes in the production process. We introduce stochasticity into the considered job-
shop scheduling problems by perturbing the processing times of all operations such that
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Table 1. Gradient-descent policy learning results for scheduling benchmarks grouped by problem sizes.
Instances ABZ5-9, FT10/20, ORB1-9, and LA01-40 (Beasley 2005) are covered. Error values eb, em, and
er are in %, u

⋆ gives average numbers of policy updates, ’-’ indicates that no convergence was achieved
within umax policy update steps.

Size #Prbl Optimal Initial Pol. dmax = 0 dmax = 20

m × n Cmax Error er eb em u
⋆

eb em u
⋆

5x10 5 620.2 23.4 1.9 3.3 229 1.9 3.9 367

5x15 5 917.6 14.7 0.0 0.1 69 0.0 0.0 670

5x20 6 1179.2 15.2 0.2 0.2 226 0.2 0.2 2069

10x10 17 912.5 26.9 4.2 6.1 158 2.2 4.6 495

10x15 5 983.4 30.7 4.6 5.9 948 2.5 4.2 1047

10x20 5 1236.2 30.1 2.9 3.9 556 2.4 4.7 1738

10x30 5 1792.4 18.2 0.0 - - (3/5) 0.0 - - (0/5)

15x15 5 1263.2 29.9 6.0 8.2 159 4.6 7.3 624

15x20 3 676.0 29.9 5.4 7.8 678 6.8 - - (0/3)

δ(oj,k) := δ(oj,k)+κ with κ chosen randomly from [0, δ(oj,k)/10]. As these perturbations
are determined online, i.e. during the actual processing of the jobs in the plant, this
renders the practical application of a well-established, centralized job-shop scheduling
algorithm difficult. Again, we start by an investigation of a single stochastic benchmark
instance, before we continue with a larger set of problem instances.

6.3.1. Example Problem

In this experiment, we focus on a stochastically perturbed version of the well-known
FT10 benchmark problem where the processing times of all operations were increased
randomly. As a consequence, the theoretical optimum in terms of minimal makespan is
no longer Copt

max = 930 as in the deterministic case, but some random value subject to
the respective random fluctuations occurring in the operations’ processing times.
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Figure 4. Comparison of PG learning results achieved for the stochastic FT10 benchmark. A
random dispatching policy corresponds to the starting point of learning, the bars for reactive
(dmax = 0) and delay (dmax = 20) agents denote the performance of the distributed policy after
2500 policy updates.

From Figure 4 we can see that a purely random job dispatcher (representing our base-
line) would yield an average makespan of 1281.06. Apparently, such a random dispatching
strategy is outperformed by the FIFO, SPT, and SQNO rules each of which achieve lower
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expected makespans. The LPT rule, by contrast, performs even slightly worse than the
baseline. The error bars in that figure indicate the best and worst makespan that has oc-
curred in the course of 100.000 episodes, i.e. within as many repetitions of this stochastic
job-shop problem.

Starting with an initially random dispatching policy, the learning agents quickly im-
prove their behavior (Figure 5). It is interesting to note that the first policy update
actually decreases the joint performance of the learners (getting worse than the random
rule), but that from the second update onward the baseline is clearly superseded, and af-
ter already 14 policy updates all static dispatching priority rules are outperformed. Note
that a logarithmic abscissa is used and that each data point corresponds to an average
of 100 repetitions of the stochastic FT10 problem. As a consequence, in the right part
of the figure the impression arises that the noise level in the performance of the DPRs
is increasing, but this is due to the fact that there are much more data points shown
on narrow space. Indeed, the fluctuations of the performance of static rules is constant
throughout the experiment.
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Figure 5. PG learning progress for the stochastic FT10 benchmark, opposed for purely reactive
and communicating agents as well as a selection of dispatching priority rules.

After about 100 updates to the agents’ policy parameters, almost no more improve-
ments in terms of makespan can be observed. The final performance of the learning
approach obtained after 2500 policy updates can be read from the bar chart in Fig-
ure 4. As emphasized in Section 6.1, the performance reported here corresponds to the
makespan Cmls

max of a maximum likelihood schedule, which means that the agents choose
the action α with highest probability πi(α, si|θ

i) in any state si. Purely reactive agents
yield an expected makespan of 1068.48 on the stochastic FT10 problem. If the agents are
allowed to resolve some of their interdependencies using the communication mechanism
we proposed (with dmax = 20) and, thus, may also create delay schedules, they achieve
a makespan of 1032.04 on average.

6.3.2. Benchmark Suites

While the previous example concentrated on one individual stochastic JSSP, we also
investigated whether the trend found so far also holds for a larger number of stochastic
schedule benchmarks. We selected 15 benchmark problems from the OR Library and
introduced stochasticity in all operations’ durations as described above. Since the bench-
marks considered vary considerably in the lengths of their operations and, hence in the
makespan of (optimal) schedules, forming average values over that set of problems would
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not be informative. Therefore, we report relative makespan values in the following, where
we define the average makespan Cinit

max of a random (initial) policy as a baseline and denote
it by 100%.
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Figure 6. Learning progress for stochastic versions of a set of 15 10×10 benchmarks. Thick lines
are averages, thin lines denote best/worst runs. Black curves are for reactive policies (dmax = 0),
gray ones use dmax = 20. The ordinate plots the makespan achieved relative to the average
makespan of a random dispatcher.

In Figure 6, we sketch, averaged over the 15 benchmark problems considered, the
makespan achieved by the learning agents relative to the average makespan a purely
random dispatcher would achieve and subject to the number of policy updates made.
Again, each data point plotted represents the average of 100 episodes experienced by the
learners. The corresponding best and worst episodes are shown as well (thin lines).

After the second policy update, the average performance of the learners has already
improved by more than 5% compared to their initial policies, after approximately 10
updates this number has increased to 10%, and after circa 100 updates to 15%. The
advantage of using communication and, thus, eventually creating delay schedules is more
pronounced in later stages of the learning process. This must be tributed to the problem
aggravation and state space augmentation introduced with the ability to notify other
agents about future incoming jobs.

As outlined in Section 6.1, we allowed the agents to do an update after E = 100
episodes of interaction with the plant. For a practical setting, one might consider to do
policy updates after significantly less interaction with the environment. Clearly, reducing
the value of E increases the variance of the Monte-Carlo gradient estimate (cf. Equation
9) or, stated differently, introduces more noise into the gradient calculation. As a conse-
quence, the policy gradient algorithm performs a more pronounced stochastic gradient
descent and, hence, the number of policy updates required to reach a local optimum
is increasing likewise. As far as the results reported here are concerned, we employed
a comparatively high value of E in order to obtain reliable gradient estimates. In an-
other set of experiments, we observed that, in fact, similar final average performance is
achieved by the learning agents with a tenth of interaction (E = 10). A more compre-
hensive discussion of the trade-off between required interaction with the plant versus the
correctness of the gradient estimate and its impact on the learning process is provided
by Gabel (2009).

Figure 7 summarizes the final average performance achieved by our decentralized pol-
icy gradient learning approach. The results are opposed to the results brought about by
the DPR representatives we are considering. With a relative average makespan of 84.2%
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Figure 7. Comparison of the performance of different DPRs averaged over 15 stochastically
perturbed JSS benchmark problems. All values are relative to the average makespan a random
dispatcher yields. The values reported for the PG learning agents denote their performance after
2500 policy updates.

(83.1% for dmax = 20), the learning dispatching agents unambiguously grasp the charac-
teristics of the respective scheduling problems and their inherent stochasticity. Note that
the type of stochasticity present in the environment is not known to the learners and
that the agents achieve these results in an independent manner, using local, i.e. resource-
specific information only, and without the existence of a centralized or coordinating
entity.

7. Related Work

The utilization of policy gradient methods in the context of distributed problem solv-
ing is not new. Building upon the statistical gradient-following policy learning scheme
by Williams (1992), Peshkin et al. (2000) show that, when employing distributed con-
trol of factored actions, it is possible to find at least local optima in the space of the
agents’ policies. While these authors evaluate their gradient-descent learning algorithm
for a simulated soccer game, another prominent application domain targeted by several
authors using PG approaches is the task of network routing (Tao et al. 2001, Peshkin
and Savova 2002), which had previously been examined with the value function-based
Q-Routing algorithm (Boyan and Littman 1993). In contrast to these pieces of work,
the application of gradient-descent policy search to distributed problems modelled as
decentralized MDPs with changing action sets, and in particular for job-shop scheduling
problems, as pursued in this paper, is new.

Yagan and Tham (2007) study policy gradient methods for reinforcement learning
agents in the DEC-POMDP framework (Bernstein et al. 2002), as we do. In order to
establish coordination, they define a neighborhood of locally interacting agents which
are allowed to fully exchange their local policies. By contrast, using the mechanism for
resolving transition dependencies we have proposed, agents dedicatedly notify a sin-
gle agent about a dependent action they have just taken. With regard to inter-agent
communication, the idea of exploiting locality of interaction in distributed systems to
optimize a global objective function has already been adopted in the context of dynamic
constraint optimization and satisfaction problems (e.g. Modi et al., 2005). Moreover,
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job-shop scheduling problems have also been interpreted and solved as constraint opti-
mization problems (e.g. Liu and Sycara, 1995) with the goal of finding an optimal solution
through applying a sequence of distributed repair operations. In fact, such an approach
bears some resemblance to the repair-based reinforcement learning approach to job-shop
scheduling by Zhang and Dietterich (1995), but it is less related to our work since we
interpret the scheduling task as a sequential decision problem tackled by independently
acting and learning agents.

By contrast, of higher relevance to the article at hand is the work by Aberdeen and
Buffet (2007) on PG methods for planning problems. Here, also a factorization of the
global policy is made and independently learning (yet, non-communicating) agents are
employed for various temporal planning tasks. Another related work that utilizes sim-
ple and independent learners, focuses on value function-based RL with neural networks
(Gabel and Riedmiller 2007). In that work, we developed a constructive approach to solv-
ing multi-agent scheduling problems (not a repair-based one), but did not utilize policy
search-based reinforcement learning algorithms, but methods that first learn value func-
tions and induce their policies from those functions. Similarly, Pontrandolfo et al. (2002)
focus on value function-based average reward reinforcement learning algorithms and ap-
ply them for supply chain management problems, also tackling the issue of inter-agent
coordination.

8. Conclusion

Nearly all work on solving scheduling problems using approaches enhanced by computa-
tional intelligence methods assume full knowledge about the problem and, hence, perform
predictive scheduling. In this work, we have proposed a clear departure from this cen-
tralized approach, cast job-shop scheduling problems as decentralized Markov decision
processes, and proposed a novel algorithm to approximate solutions to this problem.

Policy gradient methods have recently gained much popularity within the RL and
distributed AI community. To this end, we have shown how to apply a gradient-descent
policy search method for scheduling problems. We have modelled the task of job-shop
scheduling as sequential decision process using the framework of factored DEC-MDPs. In
so doing, we attached independent and simply structured agents to each of the processing
resources which improved their local dispatching policies using an algorithm that updates
their policies following the gradient of expected makespan. This distributed approach in
general does not allow for finding the best solution of job-shop scheduling instances, but it
facilitates discovering near-optimal approximations thereof in little time. To overcome the
purely reactive dispatching behavior of the agents, we also suggested a straightforward
inter-agent notification mechanism that enables the agents to partially get to know future
incoming jobs such that they are allowed to dedicatedly decide to remain idle and, hence,
are able create solutions corresponding to delay schedules. Our empirical evaluation using
established benchmark problems has demonstrated the effectiveness of our approach for
deterministic as well as stochastic job-shop scheduling problems.

The work performed and described in the scope of this article opens a number of
opportunities for interesting directions of future research. We have shown that the class
of decentralized problems identified in Section 2 matches well with job-shop scheduling
problems. We have also pointed to the fact that this class’ usability is not restricted
to this application area, but can be employed for different scheduling problems and
application domains beyond manufacturing as well. Hence, an interesting avenue for
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future work is represented by the application of our policy gradient RL algorithm to
different scheduling scenarios and application fields, e.g. to network routing or traffic
control problems. As pointed out in Section 4, we have applied our algorithm consistently
with constant learning rates. However, adaptive methods exist (e.g. the Rprop method,
Riedmiller and Braun, 1993) that allow for dynamically changing learning rate vectors
as learning proceeds. Since such adaptations typically result in a significant speed-up of
the learning progress (Kocsis et al. 2006), a combination our approach with the Rprop
technique is a promising idea.
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