FRA-UNIted — Team Description 2018

Thomas Gabel, Philipp Kléppner, Eicke Godehardt

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences
60318 Frankfurt am Main, Germany
{tgabel|godehardt}@fb2.fra-uas.de, kloeppne@stud.fra-uas.de

Abstract. The main focus of FRA-UNIted’s effort in the RoboCup soc-
cer simulation 2D domain is to develop and to apply machine learning
techniques in complex domains. In particular, we are interested in ap-
plying reinforcement learning methods, where the training signal is only
given in terms of success or failure. In this paper, we describe the imple-
mentation of our newest behavior: Wiretapping and decoding opponent
communication using convolutional neural networks in TensorFlow.

1 Introduction

The soccer simulation 2D team FRA-UNIted is a continuation of the former
Brainstormers project which has ceased to be active in 2010. The ancestor Brain-
stormers project was established in 1998 by Martin Riedmiller, starting off with
a 2D team which had been led by the first author of this team description paper
since 2005. Over the years, a number of sister teams emerged (e.g. the Tribots
and Twobots) participating in real robot leagues. Our efforts in the RoboCup
domain have been accompanied by the achievement of several successes such as
multiple world champion and world vice champion titles as well as victories at
numerous local tournaments throughout the first decade of the new millennium.

While the real robot teams mentioned were closed down entirely, the 2D team
has been in suspended mode since 2010 and was re-established in 2015 at the
first author’s new affiliation, Frankfurt University of Applied Sciences, reflecting
this relocation with the team’s new name FRA-UNITted.

As a continuation of our efforts in the ancestor project, the underlying and
encouraging research goal of FRA-UNIted is to exploit artificial intelligence and
machine learning techniques wherever possible. Particularly, the successful em-
ployment of reinforcement learning (RL, [8]) methods for various elements of
FRA-UNTted’s decision making modules — and their integration into the com-
petition team — has been and is our main focus.

Moreover, the extended use of the FRA-UNIted framework in the context
of university teaching has moved into our special focus. So, we aim at employ-
ing the 2D soccer simulation domain as a fundament for teaching agent-based
programming, foundations of multi-agents systems as well as applied machine
learning algorithms.

In this team description paper, we refrain from presenting approaches and
ideas we already explained in team description papers of the previous years.
Instead, we focus on recent changes and extensions to the team as well as on
reporting partial results of work currently in progress. We start this team de-
scription paper, however, with a short general overview of the FRA-UNIted
framework. Note that, to this end, there is some overlap with our older team
description papers including those written in the context of our ancestor project
(Brainstormers 2D, 2005-2010) which is why the interested reader is also referred
to those publications.

1.1 Design Principles
FRA-UNTted relies on the following basic principles:

— There are two main modules: the world module and the decision making
module.

— Input to the decision module is the approximate, complete world state as
provided by the soccer simulation environment.

— The soccer environment is modeled as a Markovian Decision Process (MDP).

— Decision making is organized in complex and less complex behaviors where
the more complex ones can easily utilize the less complex ones.

— A large part of the behaviors is learned by reinforcement learning methods.

— Modern AI methods are applied wherever possible and useful (e.g. particle
filters are used for improved self localization).

high level ‘ defensive behavior aggressive behavior

with ball behavior J no ball behavior

dribble
behavior

‘ freekick behavior

‘ goalshot behavior

[selfpass behavior J ‘ pass behavior] ‘ go to ball behavior

low level ¥

Fig. 1. The Behavior Architecture

1.2 The FRA-UNIted Agent

The decision-making process of the FRA-UNIted agent is inspired by behavior-
based robot architectures. A set of more or less complex behaviors realize the
agents’ decision making as sketched in Figure 1. To a certain degree this architec-
ture can be characterized as hierarchical, differing from more complex behaviors,
such as “no ball behavior”, to very basic, skill-like ones, e.g. “pass behavior”.
Nevertheless, there is no strict hierarchical sub-divisioning. Consequently, it is

also possible for a low-level behavior to call a more abstract one. For instance,
the behavior responsible for intercepting the ball may, under certain circum-
stances, decide that it is better to not intercept the ball, but to focus on more
defensive tasks and, in doing so, call the “defensive behavior” and delegating
responsibility for action choice to it.

2 On the Shoulders of a Giant: Integrating TensorFlow
into the FRA-UNIted Agent

The FRA-UNIted agent inherited Martin Riedmiller’s N++ framework for neu-
ral networks in C++ [7]. In the past, it was used to train behaviors like the
dribbling behavior mentioned in our 2017 Team Description Paper [3] or the
aggressive defense behavior NeuroHassle [4] where in both cases we utilized re-
inforcement learning for training.

In 2017, we did research on interpreting and understanding opponent agent
communication [5] using the TensorFlow [1] framework for machine learning in
Python. The results of this publication motivated us to integrate TensorFlow into
our agent to see how the knowledge gained can benefit our team’s performance
in a live game situation. So far, the integration was successful, but evaluation is
still ongoing and details on our observations will be published in a paper that is
currently under review.

2.1 Eavesdropping Opponent Communication

Communication between agents of a team has always played an important role
in the 2D simulation league of RoboCup. By exchanging short messages, players
are able to synchronize their observations with each other. Also, they are enabled
to announce and request passes and other actions.

In our recent research, however, we focused on communication between op-
ponent agents. We developed and implemented a neural network-based model
that tries to predict whether an opponent message is a pass announcement or
not. If we assume that it is, we try to get more information out of the message
such as the movement vector of the announced pass by using a separate deep
convolutional neural network. For more details on this approach we refer to [5].

2.2 Defining and Training Deep Neural Networks Using TensorFlow

Since the mentioned TensorFlow models were implemented in Python and our
agent code base is implemented completely in C++, it was a natural fit to try to
port these models to C++, using TensorFlow’s C++ API. Leaving the models
in Python and sending messages between an agent process and a Python process
for regression would have been an option, but we assumed that the overhead of
inter-process communication will make this approach unsuitable for real-time
soccer simulation games.

We had to closely and thoroughly examine the TensorFlow C++ API, as
it was neither as widespread nor as well documented as the Python API when
we first started working with it. Defining a simple graph model in C++ using
TensorFlow turned out to be very similar to the Python code for the same task.
Unfortunately, the C++ API does not include any optimizer classes such as the
Adam optimizer [6] used for training our models. We then decided to source out
the graph definition to the Python API as TensorFlow offers means to effortlessly
serialize, save and restore a graph definition using Protocol Buffers!-2.

Training e In Match
are!
Library
Training z
o5 FRA-
@ —> | TF — progress —| TF £ 8 UNited Opponent
C++ é E agent agent
Pyth =
bata ython Checkpoint l l
Model
definition Soccer Server

ProtocolBuffers

Fig. 2. The Python script defines the topology of the neural network model and uses
previously gathered data to train it. Training progress and model definition are stored
in separate files — the latter is generic for all teams, while the former is different for
each opponent team we are facing. Using the TensorFlow C++ API, both files are then
utilized for our agent.

As a consequence, our C++ agent code contains only few calls to the Ten-
sorFlow API. Upon initialization of our singleton TensorFlow wrapper class, we
create a session® that uses the de-serialized graph definition from our model’s
ProtoBuf file. When an opponent’s say message (string of up to 10 characters)
is heard, it is forwarded to the TensorFlow Wrapper (see Figure 2). It first feeds
the given message into the pass classification model that will output whether
the given message is assumed to be a pass announcement or not. If it is, another
model is fed with the same message, returning predicted information about the
pass.

2.3 Creating a Shared TensorFlow Library

The recommended approach to building TensorFlow C++ projects is to use
Bazel, which is a software build automation tool, similar to but on a higher
abstraction level than the well known GNU Make. Our build process utilizes the

! Protocol Buffers (ProtoBuf) is a language-agnostic method of serializing data.

2 Also, edge weights/variable values can be saved and restored in a similar manner to
snapshot training progress. The resulting file is called a checkpoint.

3 A session is used to hold the state of a TensorFlow model and run operations on it.

latter, which meant we had to find a way to integrate the library independently
from Bazel. Fortunately, the TensorFlow source provides a Bazel build rule to
compile a shared object file of the TensorFlow framework that can be linked to
the agent source.

Static linking might have also been an option but we decided against it be-
cause this approach is not as well-documented as the shared object approach and
is not officially supported. We assume that the potential performance advantage
bears no relation to the required effort to engineer an adequate and enduring
solution to this problem.

Using this shared object in combination with the corresponding header files?
enables us to build the agent with TensorFlow support using our established
GNU Make process. The size of our agent binary grew from 3.6 MB to about
6.0 MB when linking it to the shared library. The shared library itself is around
96 MB. On a modern 4-core i7 machine without GPU and with 22 agents, two
coaches and a soccer server running all on this single machine, classification as
a pass or no-pass requires 3—4 milliseconds. On a positive result, determination
of detailed information about the pass takes 9-10 milliseconds on average.

34m

o— Real pass by FRA-UNIted
o Decoded pass by FRA-UNIted

J

o— Real pass by Helios

] *— Decoded pass by Helios
X A Note that velocity vectors
Ty \ o—d/ are magnified by a factor

-52.5m ——, m A ’ 52.5m of four for better
// « 2 readability.
\

=34m

Fig. 3. For teams Helios and FRA-UNIted, 20 randomly chosen (not cherry-picked)
passes are visualized, opposing the real passes played and the information extracted
from pass announcing say messages that were sent by pass-playing agents and decoded
using our learned models. (Figure taken from [5].)

2.4 Discussion

As remarked earlier, evaluation is still ongoing and a more elaborate discussion
of our results will take place in a separate paper. Figure 3 shows the accuracy

4 A TensorFlow project requires three classes of header files: The TensorFlow header
files generated while building the shared object with Bazel and the header files of
ProtoBuf and Eigen, two libraries TensorFlow relies on.

of pass predictions against team Helios 2017 [2]. Furthermore, the integration of
TensorFlow lays the foundation for further research on advanced deep learning
approaches in RoboCup 2D, as neural network models can now be tested and
utilized in actual matches with little implementation effort.

3 Conclusion

In this team description paper we have outlined the characteristics of the FRA-
UNTIted team participating in RoboCup’s 2D Soccer Simulation League. We have
stressed that this team is a continuation of the former Brainstormers project,
pursuing similar and extended goals in research, development as well as for
teaching purposes. Specifically, we have put emphasis on our most recent research
activities and practical implementation of our results.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp, A., Irv-
ing, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J.,
Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015),
http://tensorflow.org/, software available from tensorflow.org

2. Akiyama, H., Nakashima, T, Tanaka, S., Fukushima,
T.: HELIOS2017: Team Description Paper (2017),
www.robocup2017.org/file/symposium/soccer_sim_2D/TDP_HELIOS2017.pdf,
supplementary material to RoboCup 2017: Robot Soccer World Cup XXI

3. Gabel, T., Breuer, S., Roser, C., Berneburg, R., Godehardt, E.: FRA-UNIted - Team
Description 2017 (2017), Supplementary material to RoboCup 2017: Robot Soccer
World Cup XXI

4. Gabel, T., Riedmiller, M., Trost, F.: A Case Study on Improving Defense Behavior
in Soccer Simulation 2D: The NeuroHassle Approach. In: L. Iocchi, H. Matsubara,
A. Weitzenfeld, C. Zhou, editors, RoboCup 2008: Robot Soccer World Cup XII,
LNCS. pp. 61-72. Springer, Suzhou, China (2008)

5. Gabel, T., Tharwat, A., Godehardt, E.: Eavesdropping Opponent Agent Commu-
nication Using Deep Learning. In: Proceedings of Multi-Agent System Technologies
(MATES 2017). pp. 205-222. Springer, Leipzig (2017)

6. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization. In: Proceedings
of the International Conference on Learning Representations (ICLR) (2015)

7. Riedmiller, M., Braun, H.: A Direct Adaptive Method for Faster Backpropagation
Learning: The RPROP Algorithm. In: Proceedings of the IEEE International Con-
ference on Neural Networks (ICNN). pp. 586-591. San Francisco, USA (1993)

8. Sutton, R.S., Barto, A.G.: Reinforcement Learning. An Introduction. MIT Press/A
Bradford Book, Cambridge, USA (1998)

