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Abstract: In this paper, we discuss the application of reinforcement learning for
autonomous robots using the RoboCup domain as benchmark. The paper compares
successful learning approaches in simulation with learning on real robots and
develops methodologies to overcome the additional problems in real world.
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1. INTRODUCTION

In autonomous robotics we are often faced with
the task to make a robot interact with its environ-
ment in a complex way. In many cases, developing
explicit control procedures is difficult and time
consuming and we are not guaranteed to achieve
optimal control.

In this paper, we want to discuss an alternative
way of realizing robot behavior using reinforce-
ment learning (Sutton and Barto, 1998). Doing
so, we only need to specify a reward function
that models whether the agent acts well or not
while the robot autonomously learns how to act
in order to achieve as much reward as possible.
After convergence, the learned policy is optimal
in the sense that with no other policy the robot
can achieve more reward.

Unfortunately, this theoretical result is based on
hard constraints like stochastic independence over
time and finite sets of possible situations and
actions. In practice on a real robot, reinforcement
learning turns out to be a hard job since the
theoretical assumptions are not fulfilled and high
dimensional state and action spaces have to be
dealt with. Moreover, repeating a robot experi-

ment several thousand times is not possible which
would be necessary to guarantee convergence.

While reinforcement learning techniques have so
far been applied to a large set of artificial bench-
marks like pathfinding in a maze, driving artifi-
cial cars in a hilly one-dimensional environment
or controlling a simulated cart-pole system real-
world applications are rare and its difficult to
compare learned policies with controllers based
on classical engineering. In contrast, RoboCup
(Kitano et al., 1997) provides a standardized en-
vironment where teams with completely differ-
ent control approaches compete, so that we can
directly measure the improvement that can be
achieved using learning techniques.

In this paper, we want to present how rein-
forcement learning can be applied to autonomous
robots considering the RoboCup domain as exam-
ple. We will start with a description of learning
in the context of the simulation league in which
robots and their environment are simulated and
will in the latter show how the experiences from
simulation league can be used for omnidirectional
real robots in the RoboCup Middle Size League
as well and which pre-processing is necessary.



2. LEARNING SKILLS IN SIMULATION

We started using reinforcement learning algo-
rithms to generate optimal skills in 1999 in the
RoboCup Simulation League. There, the world
is described by a stochastic state-transition sys-
tem. The agents can chose between a set of pa-
rameterized actions and therewith interact with
the environment. The system is organized as a
cyclic process with a loop time of 100ms, i.e.
the environment takes an action from the agents
periodically and provides information about the
state of the game.

Hence, the simulation can be described as a Multi-
Agent Markov Decision Process (MMDP) (Hu
and Wellman, 1998) with a certain set of possible
states and actions in which 22 agents act. This
principle modeling can be exploited by the learn-
ing algorithm.

The reinforcement learning principle is based on
the objective of accumulating as much reward as
possible over time. The reward is provided if the
agent succeeds in performing a given task, e.g.
if we want the agent to learn dribbling, reward
is provided when the agent controls the ball and
negative reward is given whenever it loses the ball.

Using this principle we were able to implement a
couple of skills as well as strategy-level behaviors
in soccer simulation. As an example, we want to
decribe how intercepting a rolling ball was learned
(Gabel and Riedmiller, 2006). One fundamental
difficulty in intercepting a ball is that the agent
must be very precise in its movements. For exam-
ple, small errors made in initial turn actions may
increase the time needed to solve the whole task
significantly.

Modeling this problem as a learning task we de-
scribed the current situation by a six-dimensional
state vector containing the velocity of the ball,
the velocity of the agent and the position of the
ball with respect to the agent’s pose. The agent
achieves a large positive reward whenever it gets
control of the ball while it obtains a negative
reward whenever it does not possess the ball.

We used the TD(1) algorithm (Sutton, 1988) to
iteratively learn the value function that repre-
sents the expected accumulated reward consid-
ering a certain state and an optimal behavior
in future. Since the value function is a function
of the six-dimensional continuous state space an
explicit table representation is not possible but
we need a function approximator. We investigated
several possible techniques like grid based ap-
proaches, memory based approaches and approx-
imation based on multi layer perceptrons.

After learning the value function we can directly
derive an optimal policy for the agent by choosing
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Fig. 1. Adaptation of the classical world-agent
interaction loop to the situation with which
we are typically faced with in autonomous
robotics

the action which leads to the successor state that
maximizes the value function. Since the simula-
tion model is known, we can perform this calcula-
tion directly.

We evaluated the performance of an agent acting
according to the learned policy on a comprehen-
sive set of test situations measuring the average
number of steps that was needed by the agent to
intercept the ball.

While grid-based and memory-based approxima-
tors where only able to learn and represent sub-
optimal policies the use of neural network approx-
imators resulted in an almost optimal policy with
an average performance of 10.57 steps. In compar-
ison, the optimal policy which can be calculated
exploiting the known simulation model has an
average performance of 9.73 steps.

The learned policy is a rather good approxima-
tion to the optimal solution which is typically
unknown. Moreover, using techniques like active
learning and reward shaping the learned policy
can be further improved. In the best case, the
learned policy needed on average only 10.01 steps
on the set of test situations.

3. CARRYING OVER TO REAL WORLD

Since the soccer simulator is build in an ideal man-
ner like a Markov decision process reinforcement
learning can be applied directly. Unfortunately,
reality does not behave as nice and therefore
additional difficulties occur. A Markov decision
process uses a stochastic model of reality: it is
a time-discrete system, it assumes stochastic in-
dependence over time and it assumes complete
knowledge of the world. Additionally, most re-
inforcement learning algorithms are based on an
environment with a small number of distinctive
states and actions. All of these assumptions do
not hold with real robots.

In contrast, we are faced with a high dimensional
continuous state space. We can only make use of
a small number of sensors to get information on
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Fig. 2. Illustration of the time gap due to sensor
and actuator delays.

the current state. Sensors are noisy and unreliable
and it is not possible to observe all state variables
directly, e.g. sensors typically used are not able
to measure the velocity of other objects but they
only yield a snapshot of the environment. Further-
more, other objects may be occluded by obstacles.
In a stochastic sense, we are therefore faced with
censored sensory input.

Figure 1 depicts the situation with which we are
typically faced. This is clearly not a Markovian
process since commands are executed with a cer-
tain delay and sensory input also refers to a cer-
tain point in past (Behnke et al., 2003). Hence,
the effect of an action taken by an agent can be
observed no earlier than several hundred millisec-
onds later (cf. fig. 2). E.g. the system latencies of
our soccer robots sum to approximately 230ms
which is seven times larger than the length of
the cycle interval of the control loop that we use.
Since our robots are driving with up to 37 they
meanwhile cover a distance of 60cm.

To overcome the problem of latencies and to cre-
ate a framework that is more similar to a Markov
decision process we propose to bridge the time gap
using sensor processing and predictive models.
Thereto we carefully need to measure the latencies
of all sensors and actuators and provide all mea-
surements and actuator commands with times-
tamps to which they refer. Notice, that different
sensors may have different delays and different
motor commands may lead to different latencies
even for the same motors. E.g. we observed that
executing a command to turn the robot on a
spot is realized quicker than a command to drive
forwardly.

Using predictive models, we can replace the state
estimated from the latest sensory input by the
expected state at the time of command execution.
Doing so, we replace outdated state information
by a predicted state that is more similar to the
true state at time of command execution assuming
adequate predictive models. Hence, reinforcement
learning becomes possible.

4. ESTIMATING PREDICTIVE MODELS

We use two types of sensors on our robots: an
omnidirectional color camera on top and wheel
encoder (Hafner et al., 2006). Both types of sen-
sors are heavily affected by noise and imprecision
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Fig. 3. Comparison of three velocity measures:
desired linear velocity (dashed line), odom-
etry (solid line) and estimated linear velocity
(dotted line). The robot was given motor
commands with constant linear velocity and
varying angular velocity.

and their measurements have to be pre-processed
to get meaningful information. To illustrate the
noise level we depicted in figure 3 a comparison
of desired velocities and measured velocities using
wheel encoders (odometry). The noise of odome-
try is caused by wheel slippage and kinetic effects.
Actually, the true velocity of the robot is below
the desired one which means that the odometry
overestimates the robot velocity.

The task to build a predictive model is to calculate
reliable and accurate estimates of the current sit-
uation in the robot’s environment and to create
measures of the dynamics in which the environ-
ment changes over time. This has to be done
taking into account the limited computation time
of at most 25ms per camera image. In a soccer
environment, this means:

estimating the robot’s pose (self-localization)
estimating the robot’s velocity

estimating the ball position and its velocity
estimating the position of other robots and
their velocities

Except of the velocity of other robots, we devel-
oped robust and efficient algorithm for all of these
subtasks.

The basic idea behind our approaches to estimate
dynamic models is to fit observations to a param-
eterized model. In contrast to approaches based
on probabilistic robotics (Thrun et al., 2005) that
have become very popular in recent years, the
classical idea of fitting model parameters has the
important advantage of combining high accuracy
with computational efficiency which is crucial in
the context of an autonomous robot application.

E.g. for the self-localization subtask, we use a
methodology that fits the model of white field
markings on the soccer field with white line seg-
ments observed in the camera image (Lauer et



al., 2005). Using efficient numerical algorithms we
are able to calculate the robot’s pose within 6ms
while a probabilistic self-localization approach
based on Particle filtering (Doucet, 1998) needs
more than three times as long for the same task
returning estimates of worse precision.

To estimate the ball velocity and the robot ve-
locity, we use specialized parameterized motion
models of the ball and the omnidirection robot,
respectively (Lauer et al., 2006). For the ball,
we assume a linear motion sometimes interrupted
when the ball is being kicked or collides with an
obstacle. The estimation of the ball velocity thus
becomes the task to solve linear regression. Hence
we are very efficient and avoid the difficulties in
optimizing the parameters of probabilistic tech-
niques like Kalman filtering and Particle filtering.

The linear and angular velocity of the robot is
estimated using a motion model of an omnidi-
rectional robot (Lauer and Lange, 2006). The
motion model itself is non-linear but, with an
appropriate mathematical decomposition, we can
derive the linear and angular velocity of the robot
analytically with little computational effort. The
dotted line in figure 3 shows the estimated linear
velocities calculated with such an estimator.

Reliable estimates of dynamic models are not only
helpful to generate a good behavior of the robot
and to be able to interact with moving objects,
e.g. intercepting and dribbling a ball, but they can
also be used to bridge the time gap by predicting
how a situation will develop in future. Thereto
we can directly apply the motion models and
perform a step-by-step simulation. Considering
interactions of objects like the ball colliding with
an obstacle further improves the predicted states.

Since the interval to bridge over is approximately
200ms, several new motor commands are sent
since the point in time to which the dynamic mod-
els refer to. Hence, the dynamics of the objects
may change in between. Considering this change
in a model of robot acceleration may also reduce
the prediction error. Therefore, we plan to use
supervised learning techniques to build such an
acceleration model.

5. LEARNING ON REAL ROBOTS

Similar to the simulation league, we started learn-
ing skills in the midsize league using reinforcement
learning. Again, the learning problem is modeled
as a Markov decision process with a set of possible
actions that can be taken by the robot, a descrip-
tion of the relevant objects in the environment
and their dynamics, and a reward function that
describes the task that should be learned. Instead
of the unknown true state of the environment

we use the predicted state that we get from the
sensor fusion and simulation process described in
the previous section.

As an example, let us again consider the ball
intercepting problem already discussed in context
of the simulation league (Miiller, 2005). We can
model the problem using a five-dimensional state
space and a finite set of actions. In contrast to the
simulation league, we have been able to reduce the
dimension of the state space by one choosing an
appropriate orientation of the coordinate system
in which we describe the geometric and dynamic
parameters. To simplify the problem, we decided
to let the robot learn only its linear velocity while
the heading of the robot is controlled using a
hand-crafted policy.

In contrast to the simulation league, we do not
know the true system dynamics of the problem.
Thus, the TD(1)-algorithm cannot be applied
here. Instead, we used the Q-learning (Watkins,
1989) algorithm that learns an optimal policy con-
sidering only samples of state-action-pairs, a suc-
cessor state and the reward achieved. No knowl-
edge of the true transition model is needed.

Like in the simulation league, the state space was
too large to be represented in a table. We used
a piecewise linear function approximator to rep-
resent the Q-function that tells how much reward
can be achieved taking a certain action in a certain
state and afterwards following the optimal strat-
egy. Exploiting the learned Q-function greedily,
i.e. choosing the action for which the Q-function
yields the largest value, leads to an optimal be-
havior that maximizes the achieved reward.

An additional problem that occurs when learning
algorithms are applied to real robots is that the
number of experiments that can be carried out is
limited to a few dozens. In contrast, to learn inter-
cepting a ball in the simulation league, we carried
out 100 000 experiments in simulation which is far
from being realizable on a real robot.

To overcome this problem we used a special sim-
ulator that simulates a RoboCup robot and that
has the same command interface as the real robot
(Kleiner and Buchheim, 2003). Unfortunately, we
could not use the simulation environment from
simulation league since there an abstract inter-
face is used that is very different from a physical
meaningful interface.

After carrying out approximately one million ex-
periments in the simulator we transfered the re-
sulting policy to the real robot. It turned out that
the learned strategy was able to intercept a rolling
ball also in reality but the failure rate was larger
than in simulation. This shows that the complex-
ity of a task on a real robot is much more difficult
than in simulation and that simulators - although
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Fig. 4. An exemplary trajectory of the robot us-
ing the learned motor controllers. The solid
lines show the achieved velocities of the three
wheels while the dashed lines show the de-
sired wheel velocities.

based on a physical modeling - do not cover all
the sources of disturbance and noise that occur in
practice. E.g. on the real robot we found out that
due to kinetic effects a combination of a linear
velocity sideways and an angular velocity results
in a harder turning than expected and almost no
linear movement. Effects like this typically are not
modeled in simulators used in RoboCup although
they are relevant for real robots.

An alternative approach of dealing with the lack of
experiments that can be carried out on real robots
was proposed in (Riedmiller, 2005). We used it to
let a robot learn to drive to a certain position.
The idea is to avoid simulation but to use the data
acquired from experiments as intensive as possible
by reusing them. The idea is related to the idea of
bootstrapping in statistics. It is combined with an
approximation of the Q-function using multi layer
perceptions (Bishop, 1995).

The task to drive to a certain position was mod-
eled in a very simple manner: three possible ac-
tions (drive forwardly, drive backwardly, stop) and
a two dimensional state space (distance to the
target position and velocity of the robot) have
been used. The control of the tangential velocity
and the robot heading was realized by a hand-
crafted controller.

With this modeling, the robot was able to learn
driving to the desired position within 10 experi-
ments. Optimal behavior was attained after 60 ex-
periments. Hence, the optimal policy was learned
within one hour on the real robot.

Beside the relatively simple task to drive to a
position we also applied the improved reinforce-
ment learning algorithm to the control of indi-
vidual motors (Hafner and Riedmiller, 2006). So
far we used PID controllers to control the motor

Table 1. Comparison of the tasks that
have been learned in our simulation and
midsize league team

level simulation league midsize league

cooperation -7 vs. 8 positioning -
-attacking strategy
-4 vs. 3 attacker po-

sitioning

skills -ball intercepting -ball intercepting
-goto position -goto position
-dribbling -approaching ball

-precise kicking

-1 vs. 1 positioning
low level -
control

-single motor
control

voltages. But since the motor and robot dynamics
contain nonlinearities caused by friction, stiction
and the power amplifier, PID controllers are not
optimal. The problem is described by four dimen-
sional state variables and a one dimensional action
set, namely the modification of motor voltage.
We discretized the action to nine distinct voltage
modification steps between which the reinforce-
ment controller could choose.

Again we needed only 50 experiments on the real
robot to learn the task. Each experiment needed
five seconds of interaction with the robot and
some additional seconds to update the Q-function.
Totally, learning was realized within one hour. An
exemplary trajectory that was generated with the
learned controller is depicted in figure 4.

6. LEARNING ON DIFFERENT LEVELS

So far we discussed learning approaches used to
acquire individual skills of a single robot. How-
ever, learning algorithms can be applied to all
levels of strategy: on the level of individual skills
like intercepting or dribbling the ball, on the level
of motor control and on the level of multi agent co-
operation. We realized learned behaviors on all of
these three levels starting in the simulation league
with individual skills like kicking, intercepting and
dribbling the ball (Riedmiller and Merke, 2003).

On the basis of the individual skills we were
able to learn multi agent coordination tasks like
optimal positioning of several agents and optimal
attack. To our surprise, the robots autonomously
learned higher level concepts like playing give and
go passes although we provided them only with
the individual skills mentioned above.

In the midsize league we again started with in-
dividual skills like driving precisely to a given
target position and intercepting a ball. Currently,
we are working on a learned low level motor con-
trol that will be used to replace non-optimal PID
controllers. A survey of all tasks for which learning
has been applied is given in table 1.



7. DISCUSSION

Reinforcement learning techniques in the domain
of autonomous robots provide the possibility to
avoid hand-coded behavior and allows to create
near optimal skills. We showed how this technique
can be used in simulation and we compared it
to the theoretically optimal policy. The learned
policy turned out to be very close to the optimum.

Applying reinforcement learning to real world
tasks needs adaptations to make the world look
like a Markov decision process. We proposed sev-
eral algorithms to estimate dynamic models of the
environment that allow to predict how the envi-
ronment of an autonomous robot will look like in
future at the point in time when a selected action
becomes active. This technique can be used to
bridge the time gap that occurs in real world and
thus enables reinforcement learning techniques to
be applied in reality.

We demonstrated how learned policies can be used
on real robots and which techniques have to be
used to overcome the problem of little experiments
that are possible in practice and high dimensional
state spaces.

The final proof of concept could be supplied
in the RoboCup tournament: the Brainstormers
simulation league team became world champion
in 2005 using skills and behaviors that have been
learned with reinforcement learning and could
thus outperform alternative approaches like hand-
coding and classical control techniques.
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